Skip to main content
Log in

Contribution of Porous Grain Boundaries to the High-Temperature Background of Internal Friction

  • PHYSICAL FOUNDATIONS OF STRENGTH AND PLASTICITY
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

A two-dimensional inhomogeneous diffusion equation for vacancies is solved to find the vacancy-concentration and normal-stress distributions and the rate of mutual grain displacement in a grain boundary. The activation energy of internal friction is shown to have two or three effective values depending on temperature and the degree of grain-boundary nonequilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. G. Cheremskii, V. V. Slezov, and V. I. Betekhtin, Pores in Solids (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  2. P. S. Liu and G. F. Chen, Porous Materials: Processing and Applications (Butterworth-Heinemann, 2014).

    Google Scholar 

  3. J. Qin, Q. Chen, Ch. Yang, and Y. Huang, “Research process on property and application of metal porous materials,” J. Alloys and Compounds 654, 39–44 (2016).

    Article  CAS  Google Scholar 

  4. V. V. Polyakov, A. N. Zhdanov, and A. N. Alekseev, “Effect of porosity on the temperature dependence of the internal friction in copper,” Kondens. Sredy Mezhfazn. Granitsy 3 (2), 170–172 (2001).

    Google Scholar 

  5. I. S. Golovin and H.-R. Sinning, “Internal friction in metallic foams and some related cellular structures,” Mater. Sci. Eng., A 370 (1–2), 504–511 (2004).

  6. K. Ota, K. Ohashi, and H. Nakajima, “Internal friction in lotus-structured porous copper with hydrogen pores,” Mater. Sci. Eng., A 341 (1–2), 139–143 (2003).

  7. G. Du, Z. Tan, Z. Li, K. Liu, Z. Lin, Ya. Ba, and D. Ba, “Microscopic damping mechanism of micro-porous metal films,” Current Applied Physics 18 (11), 1388–1392 (2018). https://doi.org/10.1016/j.cap.2018.08.002

    Article  Google Scholar 

  8. V. I. Betekhtin, E. D. Tabachnikova, A. G. Kadomtsev, M. V. Narykova, and R. Lapovok, “Effect of counterpressure during equal-channel angular pressing on nanoporosity formation in ultrafine-grained copper,” Pis’ma Zh. Tekh. Fiz. 37 (16), 52–55 (2011).

    Google Scholar 

  9. R. R. Mulyukov, R. M. Imaev, A. A. Nazarov, M. F. Imaev, and V. M. Imaev, Superplasticity of Ultrafine-Grained Alloys: Experiment, Theory, Technologies (Nauka, Moscow, 2014).

    Google Scholar 

  10. V. I. Betekhtin, A. G. Kadomtsev, V. Sklenicka, and I. Saxl, “Nanoporosity of ultracrystalline aluminum and aluminum-based alloy,” Fiz. Tverd. Tela 49 (10), 1787–1790 (2007).

    Google Scholar 

  11. P. Hartland, A. G. Crocker, and M. O. Tucker, “Grain growth with boundary pores,” J. Nucl. Mater. 152 (2–3), 310–322 (1988).

  12. V. G. Kul’kov, “Diffusion model of the internal friction in nanocrystalline material,” Zh. Tekh. Fiz. 77 (3), 43–48 (2007).

    Google Scholar 

  13. V. G. Kul’kov, “Intercrystalline sliding along faceted grain boundaries,” Poverkhnost, No. 11, 108–112 (2005).

    Google Scholar 

  14. V. G. Kul’kov, “Grain-boundary sliding along a boundary with steps,” Poverkhnost, No. 8, 84–87 (2005).

    Google Scholar 

  15. M. S. Blanter, I. S. Golovin, H. Neuhauser, and H.‑R. Sinning, Internal Friction in Metallic Materials: A Handbook (Springer, 2007).

    Book  Google Scholar 

  16. I. V. Zolotukhin and Yu. E. Kalinin, “On the high-temperature background of internal friction in crystalline and amorphous solids,” Fiz. Tverd. Tela, 37 (2), 536–545 (1995).

    CAS  Google Scholar 

  17. Yu. E. Kalinin and B. M. Darinskii, “High-temperature background of internal friction in solids,” Metalloved. Term. Obrab. Met., No. 5, 15–18 (2012).

  18. V. S. Postnikov, Internal Friction in Metals (Metallurgiya, Moscow, 1974).

    Google Scholar 

  19. V. N. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004)

    Google Scholar 

  20. P. H. Pumphrey and H. Gleiter, “On the structure of non-equilibrium high-angle grain boundaries,” The Philosophical Magazine 32 (4), 881–885 (1975). https://doi.org/10.1080/14786437508221629

    Article  CAS  Google Scholar 

  21. L. S. Shvindlerman, G. Gottstein, V. A. Ivanov, D. A. Molodov, D. Kolesnikov, and W. Lojkowski, “Grain boundary excess free volume—direct thermodynamic measurement,” J. Mater. Sci. 41. (23), 7725–7729 (2006). https://doi.org/10.1007/s10853-006-0563-0

    Article  CAS  Google Scholar 

  22. B. F. Dem’yanov, A. S. Dragunov, and A. V. Vekman, “Mechanisms of self-diffusion along grain boundaries in aluminum,” Izv. Altai Gos. Univ. 65 (2), 158–161 (2010).

    Google Scholar 

  23. I. V. Zolotukhin and Yu. E. Kalinin, “Amorphous metallic alloys,” Usp. Fiz. Nauk 160 (9), 75–110 (1990).

    Article  Google Scholar 

  24. S. V. Bobylev and I. A. Ovid’ko, “Dislocation nucleation at amorphous grain boundaries in deformable nanoceramics,” Fiz. Tverd. Tela 50 (4), 617–623 (2008).

    Google Scholar 

  25. V. G. Kul’kov and Yu. V. Vasil’eva, “Grain-boundary internal friction in steplike boundaries with microdiscontinuities,” Persp. Mater., No. 7, 171–175 (2009).

  26. V. V. Deshevykh, V. G. Kul’kov, L. N. Korotkov, and D. P. Tarasov, “High-temperature internal friction background in a nanocomposite material,” Komposity Nanostr., No. 2, 24–34 (2012).

  27. V. G. Kul’kov, P. P. Tsirul’nikov, and A. A. Syshchikov, “Grain-boundary background of internal friction with nonconservative sliding,” Fundam. Problemy Sovr. Materialoved. 15 (3), 397–402 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kul’kov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kul’kov, V.G., Syshchikov, A.A. Contribution of Porous Grain Boundaries to the High-Temperature Background of Internal Friction. Russ. Metall. 2020, 277–281 (2020). https://doi.org/10.1134/S0036029520040175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520040175

Navigation