Skip to main content
Log in

Ion synthesis and optical properties of gold nanoparticles in an Al2O3 matrix

  • Solid-State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Single-crystal Al2O3(0001) and Al2O3(1120) substrates are implanted by 160-keV Au+ ions with doses from 1015 to 1017 cm−2. Some of the implanted samples are air-annealed at 800–1200°C. The properties of the synthesized composite layers are studied by Rutherford backscattering and linear optical reflection measurements, and their nonlinear optical characteristics are examined by RZ-scanning using a picosecond Nd: YAG laser operating at a wavelength of 1064 nm. The Rutherford backscattering spectra indicate that the implanted impurity concentrates near the surface of the Al2O3. The formation of gold nanoparticles in the Al2O3 can be judged from the characteristic optical plasmon resonance band in the reflectance spectra of the samples irradiated to a dose higher than 6.0 × 1016 cm−2. The synthesized particles are shown to be responsible for nonlinear optical refraction in the samples. The nonlinear refractive index, n 2, and the real part of the third-order susceptibility, Rex(3), of the composite layers are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Stepanov and I. B. Khaibullin, Rev. Adv. Mater. Sci. 9, 109 (2005).

    Article  Google Scholar 

  2. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, Opt. Quantum Electron. 36, 949 (2004).

    Article  Google Scholar 

  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Google Scholar 

  4. A. L. Stepanov and D. E. Hole, in Recent Research Development in Applied Physics, Ed. by A. Pandalai (Transworld Res. Network, Kuala, 2002), Vol. 5, pp. 1–26.

    Google Scholar 

  5. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ., Cambridge, 1994).

    Google Scholar 

  6. M. Nastasi, J. W. Mayer, and J. K. Hirvonen, Ion-Solid Interaction: Fundamentals and Applications (Cambridge Univ., Cambridge, 1996).

    Google Scholar 

  7. R. F. Haglund, Jr., L. Yang, R. H. Magruder, III, et al., Nucl. Instrum. Methods Phys. Res. B 91, 493 (1994).

    Article  ADS  Google Scholar 

  8. A. Ryasnyansky, B. Palpant, S. Debrus, et al., Appl. Opt. 44, 2839 (2005).

    Article  ADS  Google Scholar 

  9. J. Davenas, A. Perez, P. Thevenard, and C. H. S. Dupuy, Phys. Status Solidi A 19, 679 (1973).

    Google Scholar 

  10. M. Treilleux, P. Thevenard, G. Ghassagne, and L. H. Hobbs, Phys. Status Solidi A 48, 425 (1978).

    Google Scholar 

  11. U. Kreibig, D. Andersson, G. N. Niklasson, and C. G. Granqvist, Thin Solid Films 125, 199 (1985).

    Article  ADS  Google Scholar 

  12. M. Ohkubo and N. Susuki, Philos. Mag. Lett. 57, 261 (1988).

    ADS  Google Scholar 

  13. C. w. White, D. K. Thomas, D. K. Hensley, et al., Nanostruct. Mater. 3, 447 (1993).

    Article  Google Scholar 

  14. D. O. Henderson, R. Mu, Y. S. Tung, et al., J. Vac. Sci. Technol. 13, 1198 (1995).

    Article  Google Scholar 

  15. Y. Hosoya, T. Suga, T. Yanagawa, and Y. Kurokawa, J. Appl. Phys. 81, 1475 (1997).

    Article  ADS  Google Scholar 

  16. S. Muto, T. Kubo, Y. Kurokawa, and K. Suzuki, Thin Solid Films 322, 233 (1998).

    Article  ADS  Google Scholar 

  17. H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, Appl. Phys. B 65, 673 (1997).

    Article  Google Scholar 

  18. J. Lermé, B. Palpant, B. Prével, et al., Eur. Phys. J. D. 4, 95 (1998).

    Article  ADS  Google Scholar 

  19. B. Palpant, B. Prével, J. Lermé, et al., Phys. Rev. B 57, 1963 (1998).

    Article  ADS  Google Scholar 

  20. E. Cottancin, J. Lermé, M. Gaudry, et al., Phys. Rev. B 62, 5179 (2000).

    Article  ADS  Google Scholar 

  21. M. Gaudry, J. Lermé, E. Cottancin, et al., Phys. Rev. B 64, 85407 (2001).

  22. D. Ila, E. K. Williams, S. Sarkisov, et al., Mater. Res. Soc. Symp. Proc. 504, 381 (1998).

    Google Scholar 

  23. I. Ishizaka, S. Muto, and Y. Kukrokawa, Opt. Commun. 190, 385 (2001).

    Article  ADS  Google Scholar 

  24. J. García-Serrano, U. Pal, et al., Int. J. Hydrogen Energy 82, 637 (2003).

    Article  Google Scholar 

  25. J. García-Serrano, A. G. Galindo, and U. Pal, Sol. Energy Mater. Sol. Cells 82, 291 (2004).

    Article  Google Scholar 

  26. S. Dhara, B. Sundaravel, T. R. Ravindran, et al., Chem. Phys. Lett. 399, 354 (2004).

    Article  ADS  Google Scholar 

  27. C. Margues, E. Alves, R. C. da Silver, et al., Nucl. Instrum. Methods Phys. Res. B 208, 139 (2004).

    Article  ADS  Google Scholar 

  28. C. K. Preston and M. Moskovits, J. Phys. Chem. 92, 2957 (1988).

    Article  Google Scholar 

  29. C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, J. Phys. Chem. 96, 7497 (1992).

    Article  Google Scholar 

  30. G. L. Hornyak, C. J. Partrissi, and C. R. Martin, J. Phys. Chem. 101, 1548 (1997).

    Google Scholar 

  31. A. L. Stepanov, in Metal-Polymer Nanocomposites, Ed. by L. Nikolais and G. Carotenuto (Wiley, New York, 2004).

    Google Scholar 

  32. M. Martinelli, S. Bian, J. R. Leite, and R. J. Harowicz, Appl. Phys. Lett. 72, 1427 (1998).

    Article  ADS  Google Scholar 

  33. M. Martinelli, L. Gomes, and R. Harowicz, Appl. Opt. 39, 2733 (2000).

    ADS  Google Scholar 

  34. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, et al., Opt. Commun. 253, 205 (2005).

    Article  ADS  Google Scholar 

  35. J. F. Ziegel, J. P. Biersak, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1996).

    Google Scholar 

  36. A. L. Stepanov, V. A. Zhikharev, D. E. Hole, et al., Nucl. Instrum. Methods Phys. Res. B 166–167, 26 (2000).

    Article  Google Scholar 

  37. A. L. Stepanov, V. A. Zhikharev, and I. B. Khaibullin, Fiz. Tverd. Tela (St. Petersburg) 43, 733 (2001) [Phys. Solid State 43, 766 (2001)].

    Google Scholar 

  38. V. M. Konoplev, Radiat. Eff. Lett. Sect. 87, 207 (1986).

    Google Scholar 

  39. V. M. Konoplev, Poverkhnost 2, 207 (1986).

    Google Scholar 

  40. H. Matsunami and H. Hosono, Appl. Phys. Lett. 63, 2050 (1993).

    Article  ADS  Google Scholar 

  41. E. Alves, C. McHargue, R. C. Silva, et al., Surf. Coat. Technol. 128–129, 434 (2000).

    Article  Google Scholar 

  42. S. V. Karpov, A. K. Popov, and V. V. Slabko, Izv. Ross. Akad. Nauk, Ser. Fiz. 60, 43 (1996).

    Google Scholar 

  43. A. Meldrum, L. A. Boatner, and K. Sorge, Nucl. Instrum. Methods Phys. Res. B 207, 36 (2003).

    Article  ADS  Google Scholar 

  44. M. Martinelli, S. Bian, J. R. Leite, and R. J. Harowicz, Appl. Phys. Lett. 72, 1427 (1998).

    Article  ADS  Google Scholar 

  45. M. Martinelli, L. Gomes, and R. Harowicz, Appl. Opt. 39, 2733 (2000).

    Article  ADS  Google Scholar 

  46. R. Adair, L. L. Chase, and S. A. Payne, Phys. Rev. B 39, 3337 (1989).

    Article  ADS  Google Scholar 

  47. R. F. Haglund, Jr., Handbook of Optical Properties, Vol. 2: Optical Properties of Small Particles, Interfaces and Surfaces, Ed. by R. E. Hummel and P. Wissmann (CRC, New York, 1997), pp. 191–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.L. Stepanov, C. Marques, E. Alves, R.C. da Silva, M.R. Silva, R.A. Ganeev, A.I. Ryasnyansky, T. Usmanov, 2006, published in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 11, pp. 79–87.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanov, A.L., Marques, C., Alves, E. et al. Ion synthesis and optical properties of gold nanoparticles in an Al2O3 matrix. Tech. Phys. 51, 1474–1481 (2006). https://doi.org/10.1134/S1063784206110132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784206110132

PACS numbers

Navigation