Skip to main content
Log in

“New” Ginzburg-Pekar waves in the microwave range in ice

  • Radiophysics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The recently discovered effect of microwave radiation spatial dispersion in freshwater ice is studied experimentally. This effect, first studied by Ginzburg and Pekar, shows up most vividly in the emergence of new waves that have the same polarization as the primary wave but different wavevectors. In the case of monochromatic radiation, four waves with different wavevectors may coexist in the medium. Interference of these waves may explain anomalies in the electromagnetic properties of the glacial structures observed earlier. New experimental results on the polarization properties of the signal transmitted through ice corroborate the spatial dispersion in the microwave range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  2. S. I. Pekar, Crystal Optics and Additional Light Waves (Naukova Dumka, Kiev, 1982; Benjamin, New York, 1983).

    Google Scholar 

  3. G. S. Bordonskiĭ, Fiz. Tverd. Tela (St. Petersburg) 47, 691 (2005) [Phys. Solid State 47, 715 (2005)].

    Google Scholar 

  4. R. A. Silin, Radiotekh. Élektron. (Moscow) 47, 186 (2002).

    Google Scholar 

  5. G. S. Bordonskiĭ, A. A. Gurulev, S. D. Krylov, and S. V. Tsyrenzhapov, Natural Sciences and Environmental Protection: Collection of Scientific Works (Omsk. Gos. Pedagog. Univ., Omsk, 1999), pp. 34–37.

    Google Scholar 

  6. G. S. Bordonskiĭ, S. D. Krylov, L. D. Ryabova, and A. M. Savinykh, Issled. Zemli iz Kosmosa, No. 1, 34 (1996).

  7. V. V. Bogorodsky and G. V. Trepov, Tr. Arktich. Antarktich. Inst. 379, 18 (1983).

    Google Scholar 

  8. V. V. Bogorodsky, C. R. Bentley, and P. E. Gundmansen, Radioglaciology (Gidrometeoizdat, Leningrad, 1983; Reidel, Dordrecht, 1985).

    Google Scholar 

  9. B. A. Fedorov, Tr. Arktich. Antarktich. Inst. 359, 48 (1987).

    Google Scholar 

  10. K. Yu. Bliokh and Yu. P. Bliokh, Usp. Fiz. Nauk 174, 439 (2004) [Phys. Usp. 47, 393 (2004)].

    Article  Google Scholar 

  11. V. G. Glushnev, B. D. Slutsker, and M. I. Finkel’shteĭn, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 39, 1305 (1976).

    ADS  Google Scholar 

  12. V. Petrenko and R. W. Whitworth, Physics of Ice (Oxford Univ. Press, London, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.S. Bordonskiy, A.A. Gurulev, S.D. Krylov, A.Ts. Tsybikzhapov, S.V. Tsyrenzhapov, 2006, published in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 5, pp. 94–97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordonskiy, G.S., Gurulev, A.A., Krylov, S.D. et al. “New” Ginzburg-Pekar waves in the microwave range in ice. Tech. Phys. 51, 626–629 (2006). https://doi.org/10.1134/S1063784206050148

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784206050148

PACS numbers

Navigation