Skip to main content
Log in

Influence of the Magnetic Field Inclination on Magneto-Acoustic-Gravity Waves in the Solar Atmosphere

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Observations indicate that the magnetic field inclination plays an important role in wave propagation in sunspots and active regions. We explore the properties of these waves using the exact solution of MHD equations in a plasma permeated by an inclined magnetic field. The obtained \(K-\Omega \) (wavenumber–frequency) diagrams indicate a decrease in the cut-off frequency with increasing magnetic field inclination. Typical 5-min waves are allowed to propagate upwards to the chromosphere if the magnetic field is sufficiently tilted. The ratio of Alfvén speed to sound speed plays a key role in determining the cut-off frequency. We find very low cut-off frequencies even when this ratio is small at the bottom of the model atmosphere. Wave-associated energy is investigated over the whole \(K-\Omega \) domain under consideration. As the magnetic field inclination increases, we find that modes become progressively magneto-acoustic through a large portion of the \(K-\Omega \) domain. Gravity-related energy becomes increasingly secondary. This effect depends on location in the \(K-\Omega \) diagram and the inclination angle of the magnetic field. At small \(K\) and \(\Omega \), we find that the cut-off frequency is low even though the gravity-associated energy density is not small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

Data presented as figures are available from the authors on request.

References

  • Abdelatif, T.E.: 1990, Magneto-atmospheric waves. Solar Phys. 129, 201. DOI. ADS.

    Article  ADS  Google Scholar 

  • Abdelatif, T.E., Lites, B.W., Thomas, J.H.: 1984, Oscillations in a sunspot and the surrounding photosphere. In: Keil, S.L. (ed.) Small-Scale Dynamical Processes in Quiet Stellar Atmospheres, 141. ADS.

    Google Scholar 

  • Abdelatif, T.E., Lites, B.W., Thomas, J.H.: 1986, The interaction of solar p-modes with a sunspot. I. Observations. Astrophys. J. 311, 1015. DOI. ADS.

    Article  ADS  Google Scholar 

  • Athay, R.G.: 1976, The Solar Chromosphere and Corona: Quiet Sun 53. DOI. ADS.

    Book  Google Scholar 

  • Banerjee, D., Hasan, S.S., Christensen-Dalsgaard, J.: 1995, The influence of a vertical magnetic field on oscillations in an isothermal stratified atmosphere. II. Astrophys. J. 451, 825. DOI. ADS.

    Article  ADS  Google Scholar 

  • Barnes, G., Cally, P.S.: 2001, Frequency dependent ray paths in local helioseismology. Publ. Astron. Soc. Aust. 18, 243. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bel, N., Leroy, B.: 1977, Analytical study of magnetoacoustic gravity waves. Astron. Astrophys. 55, 239. ADS.

    ADS  MATH  Google Scholar 

  • Bogdan, T.J.: 2000, Sunspot oscillations: a review. Solar Phys. 192, 373. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bogdan, T.J., Carlsson, M., Hansteen, V.H., McMurry, A., Rosenthal, C.S., Johnson, M., Petty-Powell, S., Zita, E.J., Stein, R.F., McIntosh, S.W., Nordlund, Å.: 2003, Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations. Astrophys. J. 599, 626. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bray, R.J., Loughhead, R.E.: 1974, The Solar Chromosphere. ADS.

    Book  Google Scholar 

  • Brynildsen, N., Maltby, P., Brekke, P., Haugan, S.V.H., Kjeldseth-Moe, O.: 1999, SOHO observations of the structure and dynamics of sunspot region atmospheres. Solar Phys. 186, 141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brynildsen, N., Maltby, P., Fredvik, T., Kjeldseth-Moe, O.: 2002, Oscillations above sunspots. Solar Phys. 207, 259. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S.: 2001, Note on an exact solution for magnetoatmospheric waves. Astrophys. J. 548, 473. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S.: 2005, Local magnetohelioseismology of active regions. Mon. Not. Roy. Astron. Soc. 358, 353. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S.: 2006, Dispersion relations, rays and ray splitting in magnetohelioseismology. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 364, 333. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S.: 2007, What to look for in the seismology of solar active regions. Astron. Nachr. 328, 286. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.: 2022, Alfvén wave conversion and reflection in the solar chromosphere and transition region. Physics 4, 1050. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S., Goossens, M.: 2008, Three-dimensional MHD wave propagation and conversion to Alfvén waves near the solar surface. I. Direct numerical solution. Solar Phys. 251, 251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S., Moradi, H., Rajaguru, S.P.: 2016, p-Mode Interaction with Sunspots. Geophys. Monograph Ser. 216, Am. Geophys. Union, Washington, 489. DOI. ADS.

    Book  Google Scholar 

  • Crouch, A.D., Cally, P.S.: 2003, Mode conversion of solar p modes in non-vertical magnetic fields – I. Two-dimensional model. Solar Phys. 214, 201. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., De Moortel, I.: 2005, How to channel photospheric oscillations into the corona. Astrophys. J. Lett. 624, L61. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., James, S.P.: 2004, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536. DOI. ADS.

    Article  ADS  Google Scholar 

  • de Wijn, A.G., McIntosh, S.W., De Pontieu, B.: 2009, On the propagation of p-modes into the solar chromosphere. Astrophys. J. Lett. 702, L168. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ferraro, C.A., Plumpton, C.: 1958, Hydromagnetic waves in a horizontally stratified atmosphere. V. Astrophys. J. 127, 459. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Goldreich, P., Keeley, D.A.: 1977, Solar seismology. II. The stochastic excitation of the solar p-modes by turbulent convection. Astrophys. J. 212, 243. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goossens, M., Erdélyi, R., Ruderman, M.S.: 2011, Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hasan, S.S., Christensen-Dalsgaard, J.: 1992, The influence of a vertical magnetic field on oscillations in an isothermal stratified atmosphere. Astrophys. J. 396, 311. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hasan, S.S., Kalkofen, W.: 1999, Excitation of oscillations in photospheric flux tubes through buffeting by external granules. Astrophys. J. 519, 899. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hasan, S.S., Kalkofen, W., van Ballegooijen, A.A.: 2000, Excitation of oscillations in the magnetic network on the Sun. Astrophys. J. Lett. 535, L67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hasan, S.S., van Ballegooijen, A.A.: 2008, Dynamics of the solar magnetic network. II. Heating the magnetized chromosphere. Astrophys. J. 680, 1542. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hasan, S.S., van Ballegooijen, A.A., Kalkofen, W., Steiner, O.: 2005, Dynamics of the solar magnetic network: two-dimensional MHD simulations. Astrophys. J. 631, 1270. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jefferies, S.M., McIntosh, S.W., Armstrong, J.D., Bogdan, T.J., Cacciani, A., Fleck, B.: 2006, Magnetoacoustic portals and the basal heating of the solar chromosphere. Astrophys. J. Lett. 648, L151. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jess, D.B., Reznikova, V.E., Van Doorsselaere, T., Keys, P.H., Mackay, D.H.: 2013, The influence of the magnetic field on running penumbral waves in the solar chromosphere. Astrophys. J. 779, 168. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jess, D.B., Morton, R.J., Verth, G., Fedun, V., Grant, S.D.T., Giagkiozis, I.: 2015, Multiwavelength studies of MHD waves in the solar chromosphere. An overview of recent results. Space Sci. Rev. 190, 103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kato, Y., Steiner, O., Steffen, M., Suematsu, Y.: 2011, Excitation of slow modes in network magnetic elements through magnetic pumping. Astrophys. J. Lett. 730, L24. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kato, Y., Steiner, O., Hansteen, V., Gudiksen, B., Wedemeyer, S., Carlsson, M.: 2016, Chromospheric and coronal wave generation in a magnetic flux sheath. Astrophys. J. 827, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Khomenko, E., Cally, P.S.: 2012, Numerical simulations of conversion to Alfvén waves in sunspots. Astrophys. J. 746, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Khomenko, E., Collados, M.: 2006, Numerical modeling of magnetohydrodynamic wave propagation and refraction in sunspots. Astrophys. J. 653, 739. DOI. ADS.

    Article  ADS  Google Scholar 

  • Khomenko, E., Collados, M.: 2015, Oscillations and waves in sunspots. Living Rev. Solar Phys. 12, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Khomenko, E., Kosovichev, A., Collados, M., Parchevsky, K., Olshevsky, V.: 2009, Theoretical modeling of propagation of magnetoacoustic waves in magnetic regions below sunspots. Astrophys. J. 694, 411. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kobanov, N.I., Chelpanov, A.A., Kolobov, D.Y.: 2013, Oscillations above sunspots from the temperature minimum to the corona. Astron. Astrophys. 554, A146. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leighton, R.B., Noyes, R.W., Simon, G.W.: 1962, Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leroy, B., Bel, N.: 1979, Propagation of waves in an atmosphere in the presence of a magnetic field. I. The method. Astron. Astrophys. 78, 129. ADS.

    ADS  MathSciNet  Google Scholar 

  • Leroy, B., Schwartz, S.J.: 1982, Propagation of waves in an atmosphere in the presence of a magnetic field. V – The theory of magneto-acoustic-gravity oscillations. VI – Application of magneto-acoustic-gravity mode theory to the solar atmosphere. Astron. Astrophys. 112, 84. ADS.

    ADS  MATH  Google Scholar 

  • Lites, B.W.: 1988, Photoelectric observations of chromospheric sunspot oscillations. V. Penumbral oscillations. Astrophys. J. 334, 1054. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lites, B.W.: 1992, Sunspot oscillations – observations and implications. In: Thomas, J.H., Weiss, N.O. (eds.) Sunspots. Theory and Observations, NATO Advanced Study Institute (ASI) Series C 375, 261. ADS.

    Chapter  Google Scholar 

  • Mather, J.F., Erdélyi, R.: 2016, Magneto-acoustic waves in a gravitationally stratified magnetized plasma: eigen-solutions and their applications to the solar atmosphere. Astrophys. J. 822, 116. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mathioudakis, M., Jess, D.B., Erdélyi, R.: 2013, Alfvén waves in the solar atmosphere. From theory to observations. Space Sci. Rev. 175, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Jefferies, S.M.: 2006, Observing the modification of the acoustic cutoff frequency by field inclination angle. Astrophys. J. Lett. 647, L77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moradi, H., Cally, P.S.: 2008, Time – distance modelling in a simulated sunspot atmosphere. Solar Phys. 251, 309. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nordlund, Å., Stein, R.F.: 2001, Solar oscillations and convection. I. Formalism for radial oscillations. Astrophys. J. 546, 576. DOI. ADS.

    Article  ADS  Google Scholar 

  • O’Shea, E., Muglach, K., Fleck, B.: 2002, Oscillations above sunspots: evidence for propagating waves? Astron. Astrophys. 387, 642. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rajaguru, S.P., Sangeetha, C.R., Tripathi, D.: 2019, Magnetic fields and the supply of low-frequency acoustic wave energy to the solar chromosphere. Astrophys. J. 871, 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rajaguru, S.P., Sankarasubramanian, K., Wachter, R., Scherrer, P.H.: 2007, Radiative transfer effects on Doppler measurements as sources of surface effects in sunspot seismology. Astrophys. J. Lett. 654, L175. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rajaguru, S.P., Wachter, R., Sankarasubramanian, K., Couvidat, S.: 2010, Local helioseismic and spectroscopic analyses of interactions between acoustic waves and a sunspot. Astrophys. J. Lett. 721, L86. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reznikova, V.E., Shibasaki, K., Sych, R.A., Nakariakov, V.M.: 2012, Three-minute oscillations above sunspot umbra observed with the Solar Dynamics Observatory/Atmospheric Imaging Assembly and Nobeyama Radioheliograph. Astrophys. J. 746, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Roberts, B.: 1983, Wave propagation in intense flux tubes. Solar Phys. 87, 77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rüedi, I., Cally, P.S.: 2003, A comparison between model calculations and observations of sunspot oscillations. Astron. Astrophys. 410, 1023. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scheuer, M.A., Thomas, J.H.: 1981, Umbral oscillations as resonant modes of magneto-atmospheric waves. Solar Phys. 71, 21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schunker, H., Cally, P.S.: 2006, Magnetic field inclination and atmospheric oscillations above solar active regions. Mon. Not. Roy. Astron. Soc. 372, 551. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schwartz, S.J., Bel, N.: 1984, Propagation of waves in an atmosphere in the presence of a magnetic field. VII – Magneto-acoustic-gravity modes in an oblique B. Astron. Astrophys. 137, 128. ADS.

    ADS  Google Scholar 

  • Staude, J.: 1999, Sunspot oscillations. In: Schmieder, B., Hofmann, A., Staude, J. (eds.) Third Advances in Sol. Phys. Euroconference: Magnetic Fields and Oscillations, Astron. Soc. Pacific Conf. Ser. 184, 113. ADS.

    Google Scholar 

  • Ulrich, R.K.: 1970, The five-minute oscillations on the solar surface. Astrophys. J. 162, 993. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vigeesh, G., Hasan, S.S., Steiner, O.: 2009, Wave propagation and energy transport in the magnetic network of the Sun. Astron. Astrophys. 508, 951. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vigeesh, G., Fedun, V., Hasan, S.S., Erdélyi, R.: 2012, Three-dimensional simulations of magnetohydrodynamic waves in magnetized solar atmosphere. Astrophys. J. 755, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yadav, N., Cameron, R.H., Solanki, S.K.: 2021a, Slow magneto-acoustic waves in simulations of a solar plage region carry enough energy to heat the chromosphere. Astron. Astrophys. 652, A43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yadav, N., Cameron, R.H., Solanki, S.K.: 2021b, Vortex flow properties in simulations of solar plage region: evidence for their role in chromospheric heating. Astron. Astrophys. 645, A3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yelles Chaouche, L., Abdelatif, T.E.: 2005, MAG waves in sunspots umbrae: slow waves leaking to the corona. Solar Phys. 229, 255. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yelles Chaouche, L., Moreno-Insertis, F., Bonet, J.A.: 2014, The power spectrum of solar convection flows from high-resolution observations and 3D simulations. Astron. Astrophys. 563, A93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yelles Chaouche, L., Cameron, R.H., Solanki, S.K., Riethmüller, T.L., Anusha, L.S., Witzke, V., Shapiro, A.I., Barthol, P., Gandorfer, A., Gizon, L., Hirzberger, J., van Noort, M., Blanco Rodríguez, J., Del Toro Iniesta, J.C., Orozco Suárez, D., Schmidt, W., Martínez Pillet, V., Knölker, M.: 2020, Power spectrum of turbulent convection in the solar photosphere. Astron. Astrophys. 644, A44. DOI. ADS.

    Article  Google Scholar 

  • Zaqarashvili, T.V., Erdélyi, R.: 2009, Oscillations and waves in solar spicules. Space Sci. Rev. 149, 355. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhugzhda, I.D., Dzhalilov, N.S.: 1984a, Magneto-acoustic-gravity waves on the Sun. I – Exact solution for an oblique magnetic field. Astron. Astrophys. 132, 45. ADS.

    ADS  Google Scholar 

  • Zhugzhda, Y.D., Dzhalilov, N.S.: 1984b, Magneto-acoustic-gravity waves on the Sun. II – Transformation and propagation. Astron. Astrophys. 132, 52. ADS.

    ADS  Google Scholar 

Download references

Acknowledgments

YCL acknowledges valuable technical support from BSM. The authors thank the anonymous referee for pointing out several aspects on modeling MAG waves in small and large Solar magnetic structures.

Author information

Authors and Affiliations

Authors

Contributions

L.Y.C. and O.F. prepared figures and wrote the main part of text and A.T.E. contributed in interpretation of the results.

Corresponding author

Correspondence to Lotfi Yelles Chaouche.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Alternative Derivation of the Exact Solutions of MAG Wave Equations

Appendix A: Alternative Derivation of the Exact Solutions of MAG Wave Equations

We use the Frobenius method to obtain solutions of the differential Equations 3 and 4. Starting with the corresponding series:

$$\begin{aligned} u_{x}=\sum _{n=0}^{\infty} X_{n} \zeta ^{n+\nu}\, , \end{aligned}$$
(14)

and

$$\begin{aligned} u_{z}=\sum _{n=0}^{\infty} Z_{n} \zeta ^{n+\nu}\, . \end{aligned}$$
(15)

We substitute these series into Equations 3 and 4 and gather terms of the same order “n” in \(\zeta \). This gives the recurrence relations:

$$\begin{aligned} &\left ( \Omega ^{2} -K^{2}\right ) X_{n}+\left [ - 4\Omega ^{2} K^{2} +\Omega ^{2}(n+2+\nu )^{2}\right ] X_{n+2} \\ & = - iK\left ( \frac{1}{\gamma}+\frac{n+\nu}{2}\right ) Z_{n} + \left [ -4\tau \Omega ^{2} K^{2} + \tau \Omega ^{2}(n+2+\nu )^{2} \right ] Z_{n+2}\, , \end{aligned}$$
(16)
$$\begin{aligned} &iK\left ( \frac{\gamma - 1}{\gamma}+\frac{n+\nu}{2}\right ) X_{n}+ \left [ 4\tau \Omega ^{2} K^{2} -\tau \Omega ^{2}(n+2+\nu )^{2} \right ] X_{n+2} = \left ( -\Omega ^{2}\right . \\ & \left . -\frac{(n+\nu )(n+2+\nu )}{4}\right ) Z_{n} + \left [ 4 \tau ^{2} \Omega ^{2} K^{2} - \tau ^{2}\Omega ^{2}(n+2+\nu )^{2} \right ] Z_{n+2} \, . \end{aligned}$$
(17)

We multiply the recurrence Equation 16 by \(\tau \) and add it to Equation 17. This leads to:

for \(n\geqslant 0\)

$$\begin{aligned} Z_{n}=- \frac{2iK(\nu + n)+4ik(\frac{\gamma - 1}{\gamma})+4\tau (\Omega ^{2}-K^{2})}{(\nu + n)[\nu + n +2(1+iK\tau )]+4(\frac{iK\tau}{\gamma}+\Omega ^{2})} X_{n} \, . \end{aligned}$$
(18)

If we take \(Z_{n}\) and \(Z_{n+2}\) from the recurrence Equation 18 and substitute them into Equation 16 or 17 (they give the same results), we have:

for \(n\geqslant 2\)

$$\begin{aligned} X_{n}=- \frac{[(\nu + n)(\nu + n -2)+4(\Omega ^{2}-K^{2})+4\frac{K^{2}}{\gamma \Omega ^{2}}(\frac{\gamma - 1}{\gamma})]}{[(\nu + n)^{2}- 4 K^{2}]} \frac{r}{q} X_{n-2}\, , \end{aligned}$$
(19)

where

$$\begin{aligned} q=[(\nu + n)^{2}+2(\nu + n)(1+2iK\tau )+4\Omega ^{2}(1+\tau ^{2})+4iK \tau (1+iK\tau )]\, , \end{aligned}$$

and

$$\begin{aligned} r= \frac{[(\nu +n)(\nu + n + 2(1+iK\tau ))+4(\frac{iK\tau}{\gamma}+\Omega ^{2})]}{[(\nu +n -2)(\nu + n + 2iK\tau ))+4(\frac{iK\tau}{\gamma}+\Omega ^{2})]} \, . \end{aligned}$$

These results are identical to the ones in Schwartz and Bel (1984). They use, however, a different method (a matrix method) including two other equations derived from Equations 3 and 4. Schwartz and Bel (1984) derive a solution of a system of four equations. The solutions obtained in this Appendix (using only the two original Equations 3 and 4) allow us to cross check with Schwartz and Bel’s solutions and help validate both.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yelles Chaouche, L., Ferradj, O. & Abdelatif, T.E. Influence of the Magnetic Field Inclination on Magneto-Acoustic-Gravity Waves in the Solar Atmosphere. Sol Phys 298, 23 (2023). https://doi.org/10.1007/s11207-023-02115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02115-8

Keywords

Navigation