Skip to main content
Log in

Variation of the Specific Heat in the Fermi–Pasta–Ulam Chain due to Energy Localization

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of discrete breathers (DBs) on the macroscopic properties of the Fermi–Pasta–Ulam chain with symmetric and asymmetric single-well potentials is investigated. The ratio of the total energy to the kinetic energy (which determines the specific heat) was monitored during the development of modulation instability of the short-wavelength vibrational mode with the wavenumber at the boundary of the Brillouin zone. Instability leads to the formation of chaotic DBs with subsequent transition to thermal equilibrium when DBs disappear due to the emission of energy in the form of low-amplitude phonons. The localization parameter, the number of DBs in the chain, and the average energy per one DB are given as functions of time. The number of DBs is close to the maximum at the point in time when the energy localization parameter reaches its maximum. It is found that DBs reduce the heat capacity for all considered parameters of the chain potential. This is due to the fact that the chain under consideration has a hard type of anharmonicity, at which the DB frequency increases with an increase in the amplitude. In the energy localization regime, the DB oscillation frequencies increase, which leads to an increase in the particle velocities and, accordingly, in their kinetic energy. An increase in the kinetic energy in the presence of DBs in the chain leads to a decrease in the ratio of total energy to kinetic energy, that is, to a decrease in the specific heat capacity. In chains with soft anharmonicity, the DB frequency decreases with an increase in the amplitude, and the opposite effect is obtained, i.e., DBs increase the heat capacity in this case. The obtained results can be useful for setting up experiments on the identification of discrete breathers in crystals by measuring their macroscopic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. S. Dolgov, Sov. Phys. Solid State 28, 907 (1986).

    Google Scholar 

  2. A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).

    Article  ADS  Google Scholar 

  3. J. B. Page, Phys. Rev. B 41, 7835 (1990).

    Article  ADS  Google Scholar 

  4. S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Flach and A. V. Gorbach, Phys. Rep. 467, 1 (2008).

    Article  ADS  Google Scholar 

  6. F. M. Russell, Y. Zolotaryuk, J. C. Eilbeck, and T. Dauxois, Phys. Rev. B 55, 6304 (1997).

    Article  ADS  Google Scholar 

  7. J. Cuevas, L. Q. English, P. G. Kevrekidis, and M. Anderson, Phys. Rev. Lett. 102, 224101 (2009).

    Article  ADS  Google Scholar 

  8. Y. Watanabe, T. Nishida, Y. Doi, and N. Sugimoto, Phys. Lett. A 382, 1957 (2018).

    Article  ADS  Google Scholar 

  9. K. Vorotnikov, Y. Starosvetsky, G. Theocharis, and P. G. Kevrekidis, Phys. D (Amsterdam, Neth.) 365, 27 (2018).

  10. C. Chong, M. A. Porter, P. G. Kevrekidis, and C. Daraio, J. Phys.: Condens. Matter 29, 413003 (2017).

    Google Scholar 

  11. Y. Zhang, D. M. McFarland, and A. F. Vakakis, Granular Matter 19, 59 (2017).

    Article  Google Scholar 

  12. L. Liu, G. James, P. Kevrekidis, and A. Vainchtein, Phys. D (Amsterdam, Neth.) 331, 27 (2016).

  13. L. Liu, G. James, P. Kevrekidis, and A. Vainchtein, Nonlinearity 29, 3496 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  14. K. R. Jayaprakash, Y. Starosvetsky, A. F. Vakakis, M. Peeters, and G. Kerschen, Nonlin. Dyn. 63, 359 (2011).

    Article  Google Scholar 

  15. N. Boechler, G. Theocharis, S. Job, P. G. Kevrekidis, M. A. Porter, and C. Daraio, Phys. Rev. Lett. 104, 244302 (2010).

    Article  ADS  Google Scholar 

  16. G. Theocharis, N. Boechler, P. G. Kevrekidis, S. Job, M. A. Porter, and C. Daraio, Phys. Rev. E 82, 056604 (2010).

    Article  ADS  Google Scholar 

  17. M. Sato, B. E. Hubbard, and A. J. Sievers, Rev. Mod. Phys. 78, 137 (2006).

    Article  ADS  Google Scholar 

  18. M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski, and H. G. Craighead, Phys. Rev. Lett. 90, 044102 (2003).

    Article  ADS  Google Scholar 

  19. M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, and H. G. Craighead, Europhys. Lett. 66, 318 (2004).

    Article  ADS  Google Scholar 

  20. R. Stearrett and L. Q. English, J. Phys. D: Appl. Phys. 40, 5394 (2007).

    Article  ADS  Google Scholar 

  21. A. Gomez-Rojas and P. Halevi, Phys. Rev. E 97, 022225 (2018).

    Article  ADS  Google Scholar 

  22. F. Palmero, L. Q. English, X.-L. Chen, W. Li, J. Cuevas Maraver, and P. G. Kevrekidis, Phys. Rev. E 99, 032206 (2019).

    Article  ADS  Google Scholar 

  23. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Rep. 463, 1 (2008).

    Article  ADS  Google Scholar 

  24. P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolotaryuk, Phys. Rev. Lett. 84, 745 (2000).

    Article  ADS  Google Scholar 

  25. E. Trias, J. J. Mazo, and T. P. Orlando, Phys. Rev. Lett. 84, 741 (2000).

    Article  ADS  Google Scholar 

  26. S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, and M. G. Velarde, Phys. Usp. 59, 446 (2016).

    Article  ADS  Google Scholar 

  27. B. Mihaila, C. P. Opeil, F. R. Drymiotis, J. L. Smith, J. C. Cooley, M. E. Manley, A. Migliori, C. Mielke, T. Lookman, A. Saxena, A. R. Bishop, K. B. Blagoev, D. J. Thoma, J. C. Lashley, B. E. Lang, et al., Phys. Rev. Lett. 96, 076401 (2006).

    Article  ADS  Google Scholar 

  28. M. E. Manley, M. Yethiraj, H. Sinn, H. M. Volz, A. Alatas, J. C. Lashley, W. L. Hults, G. H. Lander, and J. L. Smith, Phys. Rev. Lett. 96, 125501 (2006).

    Article  ADS  Google Scholar 

  29. M. E. Manley, M. Yethiraj, H. Sinn, H. M. Volz, A. Alatas, J. C. Lashley, W. L. Hults, G. H. Lander, D. J. Thoma, and J. L. Smith, J. Alloys Compd. 444, 129 (2007).

    Article  Google Scholar 

  30. T. Markovich, E. Polturak, J. Bossy, and E. Farhi, Phys. Rev. Lett. 88, 195301 (2002).

    Article  ADS  Google Scholar 

  31. M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet, and A. Alatas, Phys. Rev. B 79, 134304 (2009).

    Article  ADS  Google Scholar 

  32. M. E. Manley, D. L. Abernathy, N. I. Agladze, and A. J. Sievers, Sci. Rep. 1, 4 (2011).

    Article  ADS  Google Scholar 

  33. W. Liang, G. M. Vanacore, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 111, 5491 (2014).

    Article  ADS  Google Scholar 

  34. M. E. Manley, O. Hellman, N. Shulumba, A. F. May, P. J. Stonaha, J. W. Lynn, V. O. Garlea, A. Alatas, R. P. Hermann, J. D. Budai, H. Wang, B. C. Sales, and A. J. Minnich, Nat. Commun. 10, 1928 (2019).

    Article  ADS  Google Scholar 

  35. A. J. Sievers, M. Sato, J. B. Page, and T. Rossler, Phys. Rev. B 88, 104305 (2013).

    Article  ADS  Google Scholar 

  36. G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B 90, 045432 (2014).

    Article  ADS  Google Scholar 

  37. I. P. Lobzenko, G. M. Chechin, G. S. Bezuglova, Yu. A. Baimova, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 58, 633 (2016).

    Article  ADS  Google Scholar 

  38. S. A. Kiselev and A. J. Sievers, Phys. Rev. B 55, 5755 (1997).

    Article  ADS  Google Scholar 

  39. L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 81, 214306 (2010).

    Article  ADS  Google Scholar 

  40. A. Riviere, S. Lepri, D. Colognesi, and F. Piazza, Phys. Rev. B 99, 024307 (2019).

    Article  ADS  Google Scholar 

  41. A. A. Kistanov, R. T. Murzaev, S. V. Dmitriev, V. I. Dubinko, and V. V. Khizhnyakov, JETP Lett. 99, 353 (2014).

    Article  ADS  Google Scholar 

  42. E. A. Korznikova, S. Yu. Fomin, E. G. Soboleva, and S. V. Dmitriev, JETP Lett. 103, 277 (2016).

    Article  ADS  Google Scholar 

  43. N. N. Medvedev, M. D. Starostenkov, and M. E. Manley, J. Appl. Phys. 114, 213506 (2013).

    Article  ADS  Google Scholar 

  44. N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires, and G. P. Tsironis, Phys. Rev. B 69, 113201 (2004).

    Article  ADS  Google Scholar 

  45. R. T. Murzaev, D. V. Bachurin, E. A. Korznikova, and S. V. Dmitriev, Phys. Lett. A 381, 1003 (2017).

    Article  ADS  Google Scholar 

  46. M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, and A. J. Sievers, Phys. Rev. B 84, 144303 (2011).

    Article  ADS  Google Scholar 

  47. O. V. Bachurina, Comput. Mater. Sci. 160, 217 (2019).

    Article  Google Scholar 

  48. O. V. Bachurina, Model. Simul. Mater. Sci. Eng. 27, 055001 (2019).

    Article  ADS  Google Scholar 

  49. R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, D. A. Te-rentyev, and S. V. Dmitriev, Comput. Mater. Sci. 98, 88 (2015).

    Article  Google Scholar 

  50. D. A. Terentyev, A. V. Dubinko, V. I. Dubinko, S. V. Dmitriev, E. E. Zhurkin, and M. V. Sorokin, Model. Simul. Mater. Sci. 23, 085007 (2015).

    Article  ADS  Google Scholar 

  51. R. T. Murzaev, R. I. Babicheva, K. Zhou, E. A. Korznikova, S. Y. Fomin, V. I. Dubinko, and S. V. Dmitriev, Eur. Phys. J. B 89, 168 (2016).

    Article  ADS  Google Scholar 

  52. O. V. Bachurina, R. T. Murzaev, A. S. Semenov, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 60, 989 (2018).

    Article  ADS  Google Scholar 

  53. K. A. Krylova, I. P. Lobzenko, A. S. Semenov, A. A. Kudreyko, and S. V. Dmitriev, Comput. Mater. Sci. 180, 109695 (2020).

    Article  Google Scholar 

  54. O. V. Bachurina and A. A. Kudreyko, Comput. Mater. Sci. 182, 109737 (2020).

    Article  Google Scholar 

  55. M. D. Starostenkov, A. I. Potekaev, S. V. Dmitriev, P. V. Zakharov, A. M. Eremin, and V. V. Kulagina, Russ. Phys. J. 58, 1353 (2016).

    Article  Google Scholar 

  56. V. Dubinko, D. Laptev, D. Terentyev, S. V. Dmitriev, and K. Irwin, Comput. Mater. Sci. 158, 389 (2019).

    Article  Google Scholar 

  57. P. V. Zakharov, E. A. Korznikova, S. V. Dmitriev, E. G. Ekomasov, and K. Zhou, Surf. Sci. 679, 1 (2019).

    Article  ADS  Google Scholar 

  58. J. A. Baimova, E. A. Korznikova, I. P. Lobzenko, and S. V. Dmitriev, Rev. Adv. Mater. Sci. 42, 68 (2015).

    Google Scholar 

  59. E. A. Korznikova, J. A. Baimova, and S. V. Dmitriev, Europhys. Lett. 102, 60004 (2013).

    Article  ADS  Google Scholar 

  60. B. Liu, J. A. Baimova, S. V. Dmitriev, X. Wang, H. Zhu, and K. Zhou, J. Phys. D: Appl. Phys. 46, 305302 (2013).

    Article  Google Scholar 

  61. J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett. 100, 36005 (2012).

    Article  ADS  Google Scholar 

  62. E. A. Korznikova, A. V. Savin, Yu. A. Baimova, S. V. Dmitriev, and R. R. Mulyukov, JETP Lett. 96, 222 (2012).

    Article  ADS  Google Scholar 

  63. A. V. Savin and Yu. S. Kivshar, Phys. Rev. B 85, 125427 (2012).

    Article  ADS  Google Scholar 

  64. T. Shimada, D. Shirasaki, and T. Kitamura, Phys. Rev. B 81, 035401 (2010).

    Article  ADS  Google Scholar 

  65. Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, and T. Kitamura, Europhys. Lett. 80, 40008 (2007).

    Article  ADS  Google Scholar 

  66. Y. Kinoshita, Y. Yamayose, Y. Doi, A. Nakatani, and T. Kitamura, Phys. Rev. B 77, 024307 (2008).

    Article  ADS  Google Scholar 

  67. Y. Doi and A. Nakatani, J. Solid Mech. Mater. Eng. 6, 71 (2012).

    Google Scholar 

  68. L. Z. Khadeeva, S. V. Dmitriev, and Yu. S. Kivshar, JETP Lett. 94, 539 (2011).

    Article  ADS  Google Scholar 

  69. I. Evazzade, I. P. Lobzenko, E. A. Korznikova, I. A. Ovid’ko, M. R. Roknabadi, and S. V. Dmitriev, Phys. Rev. B 95, 035423 (2017).

    Article  ADS  Google Scholar 

  70. E. Barani, I. P. Lobzenko, E. A. Korznikova, E. G. Soboleva, S. V. Dmitriev, K. Zhou, and A. M. Marjaneh, Eur. Phys. J. B 90, 38 (2017).

    Article  ADS  Google Scholar 

  71. F. Hadipour, D. Saadatmand, M. Ashhadi, A. Moradi Marjaneh, I. Evazzade, A. Askari, and S. V. Dmitriev, Phys. Lett. A 384, 126100 (2020).

    Article  Google Scholar 

  72. L. K. Rysaeva, E. A. Korznikova, R. T. Murzaev, D. U. Abdullina, A. A. Kudreyko, J. A. Baimova, D. S. Lisovenko, and S. V. Dmitriev, Facta Univ., Ser. Mech. Eng. 18, 1 (2020).

    Google Scholar 

  73. E. Barani, E. A. Korznikova, A. P. Chetverikov, K. Zhou, and S. V. Dmitriev, Phys. Lett. A 381, 3553 (2017).

    Article  ADS  Google Scholar 

  74. B. Juanico, Y.-H. Sanejouand, F. Piazza, and P. de Los Rios, Phys. Rev. Lett. 99, 238104 (2007).

    Article  ADS  Google Scholar 

  75. F. Piazza and Y.-H. Sanejouand, Phys. Biol. 5, 026001 (2008).

    Article  ADS  Google Scholar 

  76. M. Peyrard, S. Cuesta-López, and G. James, J. Biol. Phys. 35, 73 (2009).

    Article  Google Scholar 

  77. A. P. Chetverikov, K. S. Sergeev, and V. D. Lakhno, Math. Biol. Bioinform. 13, t59 (2018).

    Article  Google Scholar 

  78. M. E. Manley, Acta Mater. 58, 2926 (2010).

    Article  ADS  Google Scholar 

  79. M. Peyrard and I. Daumont, Europhys. Lett. 59, 834 (2002).

    Article  ADS  Google Scholar 

  80. D. Xiong, D. Saadatmand, and S. V. Dmitriev, Phys. Rev. E 96, 042109 (2017).

    Article  ADS  Google Scholar 

  81. D. Saadatmand, D. Xiong, V. A. Kuzkin, A. M. Krivtsov, A. V. Savin, and S. V. Dmitriev, Phys. Rev. E 97, 022217 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  82. M. Singh, A. Y. Morkina, E. A. Korznikova, V. I. Dubinko, D. A. Terentiev, D. Xiong, O. B. Naimark, V. A. Gani, and S. V. Dmitriev, arXiv: 1907.03280.

  83. V. M. Burlakov and S. Kiselev, Sov. Phys. JETP 72, 854 (1991).

    ADS  Google Scholar 

  84. V. V. Mirnov, A. J. Lichtenberg, and H. Guclu, Phys. D (Amsterdam, Neth.) 157, 251 (2001).

  85. K. Ullmann, A. J. Lichtenberg, and G. Corso, Phys. Rev. E 61, 2471 (2000).

    Article  ADS  Google Scholar 

  86. Yu. A. Kosevich and S. Lepri, Phys. Rev. B 61, 299 (2000).

    Article  ADS  Google Scholar 

  87. T. Cretegny, T. Dauxois, S. Ruffo, and A. Torcini, Phys. D (Amsterdam, Neth.) 121, 109 (1998).

  88. K. Ikeda, Y. Doi, B. F. Feng, and T. Kawahara, Phys. D (Amsterdam, Neth.) 225, 184 (2007).

  89. L. Kavitha, A. Mohamadou, E. Parasuraman, D. Gopi, N. Akila, and A. Prabhu, J. Magn. Magn. Mater. 404, 91 (2016).

    Article  Google Scholar 

  90. L. Kavitha, E. Parasuraman, D. Gopi, A. Prabhu, and R. A. Vicencio, J. Magn. Magn. Mater. 401, 394 (2016).

    Article  ADS  Google Scholar 

  91. B. Tang and K. Deng, Nonlin. Dyn. 88, 2417 (2017).

    Article  Google Scholar 

  92. E. A. Korznikova, D. V. Bachurin, S. Yu. Fomin, A. P. Chetverikov, and S. V. Dmitriev, Eur. Phys. J. B 90, 23 (2017).

    Article  ADS  Google Scholar 

  93. S. Flach and A. Gorbach, Chaos 15, 015112 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  94. M. G. Velarde, W. Ebeling, and A. P. Chetverikov, Int. J. Bifurcat. Chaos 18, 3815 (2008).

    Article  Google Scholar 

  95. A. P. Chetverikov, W. Ebeling, and M. G. Velarde, Int. J. Bifurcat. Chaos 16, 1613 (2006).

    Article  Google Scholar 

  96. A. M. Kosevich and A. S. Kovalev, Sov. Phys. JETP 40, 891 (1975).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-12-00229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dmitriev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morkina, A.Y., Singh, M., Bebikhov, Y.V. et al. Variation of the Specific Heat in the Fermi–Pasta–Ulam Chain due to Energy Localization. Phys. Solid State 64, 446–454 (2022). https://doi.org/10.1134/S1063783422090050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422090050

Keywords:

Navigation