Skip to main content
Log in

Terahertz Spectroscopy System of Gas Mixtures Based on a Solid State Superconducting Source and a Terahertz Receiver

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The application of a Josephson generator of the terahertz range based on a long superconductor–insulator–superconductor tunnel junction matched with a transmitting antenna and emitting a signal into open space is demonstrated for gas spectroscopy. The generator is used as an active source, the signal of which is absorbed by a sample of a gas mixture in a cell with a length of 60 cm and then recorded by a spectrometer based on a superconductor–insulator–superconductor receiver with a spectral resolution better than 100 kHz. In the experiment, the absorption lines of ammonia and water in the terahertz range were recorded, and the dependence of the spectral characteristics of the absorption lines on the pressure of the gas mixture in a wide range (from 0.005 to 10 mbar) was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, New York, 2008).

    Google Scholar 

  2. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, J. Phys. Chem. B 106, 7146 (2002).

    Article  Google Scholar 

  3. J. B. Baxter and G. W. Guglietta, Anal. Chem. 83, 4342 (2011).

    Article  Google Scholar 

  4. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, Mater. Today 11, 18 (2008).

    Article  Google Scholar 

  5. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, Chem. Phys. Chem. 8, 2412 (2007).

    Article  Google Scholar 

  6. N. V. Kinev, K. I. Rudakov, A. M. Baryshev, and V. P. Koshelets, Phys. Solid State 60, 2173 (2018).

    Article  ADS  Google Scholar 

  7. N. V. Kinev, K. I. Rudakov, L. V. Filippenko, A. M. Baryshev, and V. P. Koshelets, J. Appl. Phys. 125, 151603 (2019).

    Article  ADS  Google Scholar 

  8. N. V. Kinev, K. I. Rudakov, L. V. Filippenko, A. M. Baryshev, and V. P. Koshelets, J. Commun. Technol. Electron. 64, 1081 (2019).

    Article  Google Scholar 

  9. N. V. Kinev, K. I. Rudakov, L. V. Filippenko, A. M. Baryshev, and V. P. Koshelets, IEEE Trans. THz Sci. Technol. 9, 557 (2019).

    Google Scholar 

  10. N. V. Kinev, K. I. Rudakov, L. V. Filippenko, V. P. Koshelets, and A. M. Baryshev, Phys. Solid State 62, 1543 (2020).

    Article  ADS  Google Scholar 

  11. N. V. Kinev, K. I. Rudakov, L. V. Filippenko, A. M. Baryshev, and V. P. Koshelets, Sensors 20, 7267 (2020).

    Article  ADS  Google Scholar 

  12. T. Higenbottam, Exp. Physiol. 80, 855 (1995).

    Article  Google Scholar 

  13. K. Alving, E. Weitzberg, and J. M. Lundberg, Eur. Res. J. 6, 1368 (1993).

    Google Scholar 

  14. E. V. Stepanov, Diode Laser Spectroscopy and Analysis of Biomarker Molecules (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  15. G. de Lange, M. Birk, D. Boersma, J. Dercksen, P. Dmitriev, A. B. Ermakov, L. V. Filippenko, H. Golstein, R. W. M. Hoogeveen, L. de Jong, A. V. Khudchenko, N. V. Kinev, O. S. Kiselev, B. van Kuik, A. de Lange, et al., Supercond. Sci. Technol. 23, 045016 (2010).

    Article  ADS  Google Scholar 

  16. V. P. Koshelets, P. N. Dmitriev, M. I. Faley, L. V. Filippenko, K. V. Kalashnikov, N. V. Kinev, O. S. Kiselev, A. A. Artanov, K. I. Rudakov, A. de Lange, G. de Lange, V. L. Vaks, M. Y. Li, and H. Wang, IEEE Trans. THz Sci. Technol. 5, 687 (2015).

    Google Scholar 

  17. N. V. Kinev, L. V. Filippenko, K. V. Kalashnikov, O. S. Kiselev, V. L. Vaks, E. G. Domracheva, and V. P. Koshelets, J. Phys.: Conf. Ser. 741, 12169 (2016).

    Google Scholar 

  18. E. Sobakinskaya, V. L. Vaks, N. Kinev, M. Ji, M. Y. Li, H. B. Wang, and V. P. Koshelets, J. Phys. D 50, 035305 (2017).

    Article  ADS  Google Scholar 

  19. H. Sun, Z. Yang, N. V. Kinev, O. S. Kiselev, Y. Lv, Y. Huang, L. Hao, X. Zhou, M. Ji, X. Tu, C. Zhang, J. Li, F. Rudau, R. Wiel, J. S. Hampp, et al., Phys. Rev. Appl. 8, 054005 (2017).

    Article  ADS  Google Scholar 

  20. L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, Sensors 13, 3331 (2013).

    Article  ADS  Google Scholar 

  21. E. Gerecht, K. O. Douglass, and D. F. Plusquellic, Opt. Express 19, 8973 (2011).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 17-79-20343-P. The LJJ and SIR samples were obtained using a unique science unit (USU no. 352529) of the Kotelnikov IRE of the Russian Academy of Sciences, developed and operating within the framework of the state task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kinev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinev, N.V., Rudakov, K.I., Filippenko, L.V. et al. Terahertz Spectroscopy System of Gas Mixtures Based on a Solid State Superconducting Source and a Terahertz Receiver. Phys. Solid State 63, 1414–1418 (2021). https://doi.org/10.1134/S1063783421090171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421090171

Keywords:

Navigation