Skip to main content

Abstract

We present a self-mixing terahertz-frequency gas spectroscopy technique using a multimode quantum cascade laser. A precision-micro-machined external waveguide module and a double-metal quantum cascade laser device are used to increase the optical feedback and the laser’s frequency tuning range. Methanol spectra are measured using two laser modes at 3.362 THz and 3.428 THz simultaneously, with more than 8 absorption peaks resolved over a 17-GHz bandwidth, which provides minimum detectable absorption coefficients of 2.7 × 10−4 cm−1 and 4.9 × 10−4 cm−1, respectively. In contrast to all previous self-mixing spectroscopy, our multimode technique expands the sensing bandwidth significantly. This broadband spectroscopy technique can potentially be used for the identification and analysis of chemical, biological radiological and nuclear (CBRN) agents and explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel PH (2002) Terahertz technology. IEEE Trans Microw Theory 50:910

    Article  Google Scholar 

  2. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97

    Article  ADS  Google Scholar 

  3. Baxter JB, Guglietta GW (2011) Terahertz spectroscopy. Anal Chem 83:4342

    Article  Google Scholar 

  4. Köhler R, Tredicucci A, Beltram F, Beere HE, Linfield EH, Davies AG, Ritchie DA, Iotti RC, Rossi F (2002) Terahertz semiconductor-heterostructure laser. Nature 417:156

    Article  ADS  Google Scholar 

  5. Walther C, Fischer M, Scalari G, Terazzi R, Hoyler N, Faist J (2007) Quantum cascade lasers operating from 1.2 to 1.6 THz. Appl Phys Lett 91:131122

    Article  ADS  Google Scholar 

  6. Wienold M, Röben B, Lü X, Rozas G, Schrottke L, Biermann K, Grahn HT (2015) Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz. Appl Phys Lett 107:202101

    Article  ADS  Google Scholar 

  7. Barkan A, Tittel FK, Mittleman DM, Dengler R, Siegel PH, Scalari G, Ajili L, Faist J, Beere HE, Linfield EH, Davies AG, Ritchie DA (2004) Linewidth and tuning characteristics of terahertz quantum cascade lasers. Opt Lett 29:575

    Article  ADS  Google Scholar 

  8. Qin Q, Reno JL, Hu Q (2011) MEMS-based tunable terahertz wire-laser over 330 GHz. Opt Lett 36:692

    Article  ADS  Google Scholar 

  9. Vitiello MS, Tredicucci A (2011) Tunable emission in THz quantum cascade lasers. IEEE Trans Terahertz Sci Technol 1:76

    Article  ADS  Google Scholar 

  10. Li LH, Chen L, Freeman JR, Salih M, Dean P, Davies AG, Linfield EH (2017) Multi-watt high-power THz frequency quantum cascade lasers. Electron Lett 53:799

    Article  ADS  Google Scholar 

  11. Gao JR, Hovenier JN, Yang ZQ, Baselmans JJA, Baryshev A, Hajenius M, Klapwijk TM, Adam AJL, Klaassen TO, Williams B, Kumar SS, Hu Q, Reno JL (2005) Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer. Appl Phys Lett 86:244104

    Article  ADS  Google Scholar 

  12. Richter H, Semenov AD, Pavlov SG, Mahler L, Tredicucci A, Beere HE, Ritchie DA, Il’in KS, Siegel M, Hübers H-W (2008) Terahertz heterodyne receiver with quantum cascade laser and hot electron bolometer mixer in a pulse tube cooler. Appl Phys Lett 93:141108

    Article  ADS  Google Scholar 

  13. Hübers H-W, Pavlov SG, Richter H, Semenov AD, Mahler L, Tredicucci A, Beere HE, Ritchie DA (2006) High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser. Appl Phys Lett 89:061115

    Article  ADS  Google Scholar 

  14. Hübers H-W, Richter H, Pavlov SG, Richter H (2013) High resolution terahertz spectroscopy with quantum cascade lasers. J Infrared Millim Terahertz Waves 34:325

    Article  Google Scholar 

  15. Ren Y, Hayton DJ, Hovenier JN, Cui M, Gao JR, Klapwijk TM, Shi SC, Kao T-Y, Hu Q, Reno JL (2012) Frequency and amplitude stabilized terahertz quantum cascade laser as local oscillator. Appl Phys Lett 101:101111

    Article  ADS  Google Scholar 

  16. Eichholz R, Richter H, Wienold M, Schrottke L, Hey R, Grahn HT, Hübers H-W (2013) Frequency modulation spectroscopy with a THz quantum-cascade laser. Opt Express 21:32199

    Article  ADS  Google Scholar 

  17. Hangauer A, Westberg, Zhang JE, Wysocki G (2016) Wavelength modulated multiheterodyne spectroscopy using Fabry-Pérot quantum cascade lasers. Opt Express 24:25298

    Article  ADS  Google Scholar 

  18. Patimisco P, Borri S, Sampaolo A, Beere HE, Ritchie DA, Vitiello MS, Scamarcio G, Spagnolo V (2004) A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser. Analyst 139:2079

    Article  ADS  Google Scholar 

  19. Hagelschuer T, Wienold M, Richter H, Schrottke L, Biermann K, Grahn HT, Hübers H-W (2016) Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser. Appl Phys Lett 109:191101

    Article  ADS  Google Scholar 

  20. Lang R, Kobayashi K (1980) External optical feedback effects on semiconductor injection laser properties. IEEE J Quantum Electron 16:347

    Article  ADS  Google Scholar 

  21. Taimre T, Nikolić M, Bertling K, Lim YL, Bosch T, Rakić AD (2015) Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing. Adv Opt Photon 7:570

    Article  Google Scholar 

  22. Hagelschuer T, Wienold M, Richter H, Schrottke L, Grahn HT, Hübers H-W (2017) Real-time gas sensing based on optical feedback in a terahertz quantum-cascade laser. Opt Express 25:30203

    Article  ADS  Google Scholar 

  23. Chhantyal-Pun R, Valavanis A, Keeley J, Rubino P, Kundu I, Han YJ, Dean P, Li LH, Davies AG, Linfield EH (2018) Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser. Opt Lett 43:2225

    Article  ADS  Google Scholar 

  24. Han YJ, Li LH, Valavanis A, Brewster N, Zhu JX, Dong R, Dean P, Bushnell L, Oldfield M, Davies AG, Ellison BN, Linfield EH (2017) Development of terahertz frequency quantum cascade lasers for the applications as local oscillators. In: THz for CBRN and explosives detection and diagnosis, p 123

    Google Scholar 

Download references

Acknowledgments

The data associated with this paper are openly available from the University of Leeds data repository. https://doi.org/10.5518/436.

Funding

UK Centre for Earth Observation Instrumentation (RP10G0435A03); European Space Agency (GSTP 4000114487/15/NL/AF); Royal Society (WM150029); Engineering and Physical Sciences Research Council (EPSRC) (EP/J017671/1, EP/P021859/1); European Research Council (ERC) (THEMIS 727541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Y.J. et al. (2021). Broadband Terahertz Gas Spectroscopy Through Multimode Self-Mixing in a Quantum Cascade Laser. In: Pereira, M.F., Apostolakis, A. (eds) Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2082-1_3

Download citation

Publish with us

Policies and ethics