Skip to main content
Log in

Synthesis, Crystal Structure, and Thermal Properties of Substituted Titanates Bi2Pr2Ti3O12 and Bi2Nd2Ti3O12

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Titanates Bi2Pr2Ti3O12 and Bi2Nd2Ti3O12 have been obtained by the solid-phase synthesis using sequential annealing of the Bi2O3, Nd2O3, Pr6O11, and TiO2 stoichiometric mixtures in air at temperatures of 1003–1323 K. Their crystal structure has been established by X-ray diffractometry and the high-temperature heat capacity has been determined by differential scanning calorimetry. Based on the experimental Cp = f(T) data, the main thermodynamic functions have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. S. Tomar, R. E. Melgarejo, A. Hidalgo, S. B. Mazumder, and R. S. Katiyar, Appl. Phys. Lett. 33, 341 (2003).

    Article  ADS  Google Scholar 

  2. N. Pavlović, D. Kanco, K. M. Szécsénji, and V. V. Srdié, Proc. Appl. Ceram. 3, 88 (2009).

    Article  Google Scholar 

  3. A. I. Klyndyuk, A. A. Glinskaya, E. A. Chizhova, and L. A. Bashkirov, Ogneupory Tekh. Keram., Nos. 1–2, 29 (2017).

    Google Scholar 

  4. C. Yang, Z. Wang, D. Pan, J. Han, Q. Li, and J. Wang, Sur. Rev. Lett. 11, 503 (2004).

    Article  ADS  Google Scholar 

  5. Y.-M. Kan, G.-J. Zhang, P.-L. Wang, and Y.-B. Cheng, J. Eur. Ceram. Soc. 28, 1641 (2008).

    Article  Google Scholar 

  6. Y. Wang, N. Zhao, M. Zhang, and X. Zhao, J. Wuhan Univ. Technol.-Mater. Sci. 25, 743 (2010).

    Google Scholar 

  7. M. Iwata, A. Toya, R. Aoyagi, M. Maeda, and Y. Ishibashi, Jpn. J. Appl. Phys. 47, 7749 (2008).

    Article  ADS  Google Scholar 

  8. Z. X. Cheng, X. L. Wang, S. X. Dou, K. Ozawa, and H. Kimura, Appl. Phys. Lett. 90, 222902 (2007).

    Article  ADS  Google Scholar 

  9. U. Chon, K.-B. Kim, H. M. Jang, and G.-C. Yi, Appl. Phys. Lett. 79, 3137 (2001).

    Article  ADS  Google Scholar 

  10. M. E. Villafuerte-Castrejon, F. Camacho-Alanis, F. González, A. Ibarra-Palos, G. González, L. Fuentes, and L. Bucio, J. Eur. Ceram. Soc. 27, 545 (2007).

    Article  Google Scholar 

  11. F. Yang, B. Jia, T. Wei, C. Zhao, Q. Zhou, Z. Li, M. Du, M. Wang, Y. Liu, and C. Xie, Inorg. Chem. Front. 6, 2756 (2019).

    Article  Google Scholar 

  12. A. Huanosta-Tera, R. Castañeda-Guzman, and J. L. Pineda-Flores, Mater. Res. Bull. 38, 1073 (2003).

    Article  Google Scholar 

  13. J. L. Pineda-Flores, E. Chavira, J. Reyes-Garga, A. M. González, and A. Huanosta-Tera, J. Eur. Ceram. Soc. 23, 839 (2003).

    Article  Google Scholar 

  14. S. J. Kim, C. Moriyoshi, S. Kimura, Y. Kuroiwa, K. Koto, M. Takata, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 91, 062913 (2007).

    Article  ADS  Google Scholar 

  15. A. N. Kalinkin, E. M. Kozhbakhteev, A. E. Polyakov, and V. M. Skorikov, Inorg. Mater. 49, 1031 (2013).

    Article  Google Scholar 

  16. S. A. Ivanov, T. Sarkar, E. A. Fortalnova, E. D. Politova, S. Yu. Stefanovich, M. G. Safronenko, P. Nordbland, and R. Mathieu, J. Mater. Sci.: Mater. Electron. 28, 7692 (2017).

    Google Scholar 

  17. W. Gong and R. Zhang, J. Alloys Compd. 548, 216 (2013).

    Article  Google Scholar 

  18. M. A. Petrova, A. S. Novikova, and R. G. Grebenshchikov, Dokl. Akad. Nauk SSSR 246, 121 (1979).

    Google Scholar 

  19. M. A. Petrova, A. S. Novikova, and R. G. Grebenshchikov, Izv. Akad. Nauk SSSR Neorg. Mater. 18, 700 (1982).

    Google Scholar 

  20. Š. Kunej and D. Suvorov, J. Am. Ceram. Soc. 91, 3472 (2008).

    Article  Google Scholar 

  21. J. Takahashi, K. Kageyama, and T. Hayashi, Jpn. J. A-ppl. Phys. B 30, 2354 (1991).

    Article  ADS  Google Scholar 

  22. G. Garcia-Martinez, L. G. Martinez-Gonzalez, J. I. Escalante-Garcia, and A. F. Fuentes, Powder Technol. 152, 72 (2005).

    Article  Google Scholar 

  23. L. N. Komissarova, V. M. Shatskii, G. Ya. Pushkina, L. G. Shcherbakova, L. G. Mamsurova, and G. E. Sukhanova, Compounds of Rare Earth Elements. Carbonates, Silicates, Nitrates, Titanates (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  24. P. Kostantinov, K. Krezhov, E. Sváb, G. Mészáros, and Gy. Török, Phys. B (Amsterdam, Neth.) 276278, 260 (2000).

  25. X. Li, W. Wu, F. Liu, Y. Li, P. Si, and H. Ge, Mater. Lett. 118, 24 (2014).

    Article  Google Scholar 

  26. L. V. Morozova, Inorg. Mater. 55, 295 (2019).

    Article  Google Scholar 

  27. V. M. Denisov, L. T. Denisova, L. A. Irtyugo, and V. S. Biront, Phys. Solid State 52, 1362 (2010).

    Article  ADS  Google Scholar 

  28. L. T. Denisova, L. A. Irtyugo, Yu. F. Kargin, V. V. Be-letskii, and V. M. Denisov, Neorg. Mater. 55, 516 (2019).

    Article  Google Scholar 

  29. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data, User’s Manual (Bruker AXS, Karlsruhe, Germany, 2008).

  30. N. A. Lomanova, M. V. Tomkovich, V. L. Ugolkov, and V. V. Gusarov, Russ. J. Appl. Chem. 90, 831 (2017).

    Article  Google Scholar 

  31. C. Long, Q. Chang, and H. Fan, Sci. Rep. 7, 4193 (2017).

    Article  ADS  Google Scholar 

  32. M. Takahashi, Y. Noguchi, and M. Miyayama, Jpn. J. Appl. Phys. 41, 7053 (2002).

    Article  ADS  Google Scholar 

  33. N. C. Hyatt, J. A. Hriljac, and T. P. Comyn, Mater. Res. Bull. 38, 837 (2003).

    Article  Google Scholar 

  34. M. Takahashi, Y. Noguchi, and M. Miyayama, J. Ceram. Proc. Res. 6, 281 (2005).

    Google Scholar 

  35. Gopalakrishnan, T. Sivakumar, K. Ramesha, V. Thangadurai, and G. N. Subbanna, J. Am. Chem. Soc. 122, 6237 (2000).

    Article  Google Scholar 

  36. C. Capillas, E. S. Tasci, G. de la Flor, D. Orobengoa, J. M. Perez-Mato, and M. I. Aroyo, Z. Kristal. Mater. 226, 186 (2011).

    Google Scholar 

  37. L. T. Denisova, Yu. F. Kargin, L. G. Chumilina, N. V. Belousova, and V. M. Denisov, Inorg. Mater. 56, 597 (2020).

    Article  Google Scholar 

  38. K. Sun, J. H. Cho, F. C. Chou, W. C. Lee, L. L. Miller, and D. C. Johnston, Phys. Rev. B 43, 239 (1991).

    Article  ADS  Google Scholar 

  39. C. G. Maier and K. K. Kelley, J. Am. Chem. Soc. 54, 3234 (1932).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Krasnoyarsk Territorial Center for Collective Use, Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences.

Funding

This study was carried out in part within the state assignment for the Siberian Federal University, project no. FSRZ-2020-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Molokeev, M.S., Galiakhmetova, N.A. et al. Synthesis, Crystal Structure, and Thermal Properties of Substituted Titanates Bi2Pr2Ti3O12 and Bi2Nd2Ti3O12. Phys. Solid State 63, 1159–1164 (2021). https://doi.org/10.1134/S1063783421080084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421080084

Keywords:

Navigation