Skip to main content
Log in

Diode Heterostructures with Narrow-Gap Ferromagnetic A3FeB5 Semiconductors of Various Conduction Type

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The diode structures with narrow-gap ferromagnetic A3FeB5 semiconductors in the function of only p-region (p-GaFeSb/n-InGaAs), only n-region (n-InFeSb/p-InGaAs), p- and n-regions (p‑GaFeSb/ n-InFeSb, p-GaFeSb/n-InFeAs) of the pn junction were manufactured by the method of pulsed laser deposition in vacuum. Composition of the ferromagnetic semiconductor layers and their thicknesses determined by the results of X-ray photoelectron spectroscopy in total correspond to the technological information for diode structures. More specifically, thickness of the GaFeSb layer is 25–30 nm, thicknesses of the InFeAs and InFeSb layers is 35–40 nm. The iron content in InFeSb ranges from 25 to 35 at %. The GaFeSb layer contains from 15 to 41 at % of iron, while 35 at % of iron is registered in InFeAs layer. Presence of Fe‒As(Sb), In–Fe, and Fe–Ga chemical bonds was found at chemical analysis of the structures. Because of this, it may be assumed that, in the manufactured structures, the Fe atoms can displace the elements of III and V groups simultaneously. All the structures demonstrates the effect of negative magnetoresistance at sufficiently low potentials of observation of the effect (to 50 mV), in small magnetic fields (to 3600 Oe) and at high temperature of measurements. For the GaFeSb/InFeSb, GaFeSb/InFeAs diodes, the negative magnetoresistance was observed for the first time up to room temperature. The hysteresis form of the dependences of resistance on magnetic field suggests an effect of ferromagnetic properties of the narrow-gap semiconductor layers on the carrier transport in the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. T. Tu, P. N. Hai, L. D. Anh, and M. Tanaka, Phys. Rev. B 92, 144403 (2015).

    Article  ADS  Google Scholar 

  2. D. Sasaki, L. D. Anh, P. N. Hai, and M. Tanaka, Appl. Phys. Lett. 104, 142406 (2014).

    Article  ADS  Google Scholar 

  3. L. D. Anh, D. Kaneko, P. N. Hai, and M. Tanaka, Appl. Phys. Lett. 107, 232405 (2015).

    Article  ADS  Google Scholar 

  4. N. T. Tu, P. N. Hai, L. D. Anh, and M. Tanaka, Appl. Phys. Lett. 108, 192401 (2016).

    Article  ADS  Google Scholar 

  5. A. V. Kudrin, Yu. A. Danilov, V. P. Lesnikov, M. V. Dorokhin, O. V. Vikhrova, D. A. Pavlov, Yu. V. Usov, I. N. Antonov, R. N. Kriukov, A. V. Alaferdov, and N. A. Sobolev, J. Appl. Phys. 122, 183901 (2017).

    Article  ADS  Google Scholar 

  6. A. V. Kudrin, Yu. A. Danilov, V. P. Lesnikov, and E. A. Pitirimova, Tech. Phys. Lett. 42, 88 (2016).

    Article  ADS  Google Scholar 

  7. L. D. Anh, P. N. Hai, and M. Tanaka, Nat. Commun. 7, 13810 (2016).

    Article  ADS  Google Scholar 

  8. L. D. Anh, P. N. Hai, and M. Tanaka, Appl. Phys. Lett. 112, 102402 (2018).

    Article  ADS  Google Scholar 

  9. N. T. Tu, P. N. Hai, L. D. Anh, and M. Tanaka, Appl. Phys. Lett. 112, 122409 (2018).

    Article  ADS  Google Scholar 

  10. K. Takiguchi, L. D. Anh, T. Chiba, T. Koyama, D. Chiba, and M. Tanaka, Nat. Phys. 15, 1134 (2019).

    Article  Google Scholar 

  11. A. V. Kudrin, V. P. Lesnikov, D. A. Pavlov, Yu. V. Usov, Yu. A. Danilov, M. V. Dorokhin, O. V. Vikhrova, V. E. Milin, R. N. Kriukov, Yu. M. Kuznetsov, V. N. Trushin, and N. A. Sobolev, J. Magn. Magn. Mater. 487, 165321 (2019).

    Article  Google Scholar 

  12. Yu. A. Danilov, A. V. Kudrin, V. P. Lesnikov, O. V. Vikhrova, R. N. Kryukov, I. N. Antonov, D. S. Tolkachev, A. V. Alaferdov, Z. E. Kun’kova, M. P. Temiryazeva, and A. G. Temiryazev, Phys. Solid State 60, 2178 (2018).

    Article  ADS  Google Scholar 

  13. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, 3rd ed. (Wiley, New York, 1985).

    Google Scholar 

  14. A. V. Boryakov, S. I. Surodin, R. N. Kryukov, D. E. Nikolichev, and S. Yu. Zubkov, J. Electron. Spectrosc. Relat. Phenom. 229, 132 (2018).

    Article  Google Scholar 

  15. http://www.nd.edu/gsnider.

  16. F. Hatami, N. N. Ledentsov, M. Grundmann, J. Bohrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich, U. Richter, S. V. Ivanov, B. Ya. Meltser, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 67, 656 (1995).

    Article  ADS  Google Scholar 

  17. F. Matsukura, H. Ohno, and T. Dietl, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 2002), Vol. 14, p. 1.

    Google Scholar 

  18. H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation (project no. 19-19-00545 manufacturing and investigation of the structures with one layer of magnetic semiconductor, and project no. 18-79-10088 manufacturing and investigation of the structures with two layers of magnetic semiconductors).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Vikhrova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by G. Levina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesnikov, V.P., Ved’, M.V., Vikhrova, O.V. et al. Diode Heterostructures with Narrow-Gap Ferromagnetic A3FeB5 Semiconductors of Various Conduction Type. Phys. Solid State 63, 1028–1035 (2021). https://doi.org/10.1134/S1063783421070131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070131

Keywords:

Navigation