Skip to main content
Log in

High-insulating β-Ga2O3 thin films by doping with a valence controllable Fe element

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Owing a much higher breakdown field (8 MV/cm) and Baliga’s figure-of-merit (3444) than other hot wide bandgap semiconductor materials such as 4H-SiC and GaN, β-Ga2O3 is regarded as a new promising candidate for high-power electronic applications. The highest electrical breakdown strength (3.8 MV/cm) of metal–oxide–semiconductor field-effect transistors (MOSFET) is demonstrated by the Air Force Research Laboratory, which has a 20 nm Al2O3 gate dielectric and a sub-micron gate-drain spacing of 0.6 µm. Among the device structure, the interface control between channel and gate is a key factor for MOSFET. The better the lattice matching between the gate and the channel layers, the better the interface structure between them will be. In this paper, Fe-doped β-Ga2O3 thin films have been grown at various substrate temperatures and oxygen partial pressures. The resistance increases markedly compared with pure β-Ga2O3, exhibiting the characteristic of high insulation. This study suggests that Fe-doped β-Ga2O3 thin film can be used as homogeneous epitaxial gate dielectric material to fabricate Ga2O3-based high-power devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016)

    Google Scholar 

  2. X.L. Zhao, W. Cui, Z.P. Wu, D.Y. Guo, P.G. Li, Y.H. An, L.H. Li, W.H. Tang, J. Electron. Mater. 46, 2366 (2017)

    Article  ADS  Google Scholar 

  3. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012)

    Article  ADS  Google Scholar 

  4. B.J. Baliga, J. Appl. Phys. 53, 1759 (1982)

    Article  ADS  Google Scholar 

  5. Z. Galazka, K. Irmscher, R. Uecker, B. Rainier, M. Pietsch, A. Kwasniewski, M. Nauman, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, J. Cryst. Growth 404, 184 (2014)

    Article  ADS  Google Scholar 

  6. K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagava, Y. Nakamura, J. Cryst. Growth 447, 36 (2016)

    Article  ADS  Google Scholar 

  7. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Jpn. J. Appl. Phys. 55, 1202A2 (2016)

    Article  Google Scholar 

  8. X.L. Zhao, Z.P. Wu, Y.S. Zhi, Y.H. An, W. Cui, L.H. Li, W.H. Tang, J. Phys. D Appl. Phys. 50, 085102 (2017)

    Article  ADS  Google Scholar 

  9. D.Y. Guo, Z.P. Wu, P.G. Li, Y.H. An, H. Liu, X.C. Guo, H. Yan, G.F. Wang, C.L. Sun, L.H. Li, W.H. Tang, Opt. Mater. Express 4, 1067 (2014)

    Article  ADS  Google Scholar 

  10. D.Y. Guo, X.L. Zhao, Y.S. Zhi, W. Cui, Y.Q. Huang, Y.H. An, P.G. Li, Z.P. Wu, W.H. Tang, Mater. Lett. 164, 364 (2016)

    Article  Google Scholar 

  11. L.P. Dong, R.X. Jia, B. Xin, Y.M. Zhang, Sci. Rep. 7, 40160 (2017)

    Article  ADS  Google Scholar 

  12. L. Binet, D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998)

    Article  ADS  Google Scholar 

  13. X.Y. Bi, Z.P. Wu, Y.Q. Huang, W.H. Tang, AIP Adv. 8, 025008 (2018)

    Article  ADS  Google Scholar 

  14. F. Alema, B. Hertog, O. Ledyaev, D. Volovik, G. Thoma, R. Miller, A. Osinsky, P. Mukhopadhyay, S. Bakhshi, H. Ali, W.V. Schoenfeld, Phys. Status Solidi 214, 1600688 (2017)

    Article  ADS  Google Scholar 

  15. X.H. Wang, F.B. Zhang, K. Saito, T. Tanaka, M. Nishio, Q.X. Guo, J. Phys. Chem. Solids 75, 1201 (2014)

    Article  ADS  Google Scholar 

  16. M. Handwerg, R. Mitdank, Z. Galazka, S.F. Fischer, Semicond. Sci. Technol. 31, 125006 (2016)

    Article  ADS  Google Scholar 

  17. Y.P. Qian, D.Y. Guo, X.L. Chu, H.Z. Shi, W.K. Zhu, K. Wang, X.K. Huang, H. Wang, S.L. Wang, P.G. Li, X.H. Zhang, W.H. Tang, Mater. Lett. 209, 558 (2017)

    Article  Google Scholar 

  18. H.K. Song, S.Y. Kwon, H.S. Seo, J.H. Moon, J.H. Yim, J.H. Lee, H.J. Kim, J.K. Jeong, Appl. Phys. Lett. 89, 3839 (2006)

    Google Scholar 

  19. F.C. Beyer, C.G. Hemmingsson, S. Leone, Y.C. Lin, A. Gallstrom, A. Henry, E. Janzen, J. Appl. Phys. 110, 1113 (2011)

    Article  Google Scholar 

  20. J. Dashdorj, M.E. Zvanut, J.G. Harrison, K. Udwary, T. Paskova, J. Appl. Phys. 112, 63 (2012)

    Article  Google Scholar 

  21. Y.M. Fan, Z.H. Liu, G.Z. Xu, H.J. Zhong, Z.L. Huang, Y.M. Zhang, J.F. Wang, K. Xu, Appl. Phys. Lett. 105, 062108 (2014)

    Article  ADS  Google Scholar 

  22. E. Richter, E. Gridneva, M. Weyers, G. Tränkle, J. Cryst. Growth 456, 16 (2016)

    Article  Google Scholar 

  23. Y.K. Noh, S.T. Lee, M.D. Kim, J.E. Oh, J. Cryst. Growth 460, 37 (2017)

    Article  ADS  Google Scholar 

  24. S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, A. Gard, Phys. Rev. Lett. 111, 087601 (2013)

    Article  ADS  Google Scholar 

  25. M. Gich, I. Fina, A. Morelli, F. Sánchez, M. Alexe, J. Gàzquez, J. Fontcuberta, A. Roig, Adv. Mater. 26, 4645 (2014)

    Article  Google Scholar 

  26. Y. Hamasaki, T. Shimizu, H. Taniguchi, T. Taniyama, S. Yasui, M. Itoh, Appl. Phys. Lett. 104, 082906 (2014)

    Article  ADS  Google Scholar 

  27. S.H. Oh, J.H. Lee, R.H. Shin, Y. Shin, C. Meny, W. Jo, Appl. Phys. Lett. 106, 142902 (2015)

    Article  ADS  Google Scholar 

  28. T. Katayama, S. Yasui, Y. Hamasaki, T. Shiraishi, A. Akama, T. Kiguchi, M. Itoh, Adv. Funct. Mater. 28, 1704789 (2017)

    Article  Google Scholar 

  29. M. Higashiwaki, K. Sasaki, T. Kamimura, M.H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 103, 013504 (2013)

    Article  Google Scholar 

  30. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi, Semicond. Sci. Technol. 31, 034001 (2016)

    Article  ADS  Google Scholar 

  31. H.W. Man, K. Sasaki, A. Kuramata, S. Tamakoshi, M. Higashiwaki, IEEE Electron Device Lett. 37, 212 (2015)

    Google Scholar 

  32. K. Zeng, J.S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J.A. Gardella Jr., U. Singisett, IEEE Electron Device Lett. 38, 4 (2017)

    Article  Google Scholar 

  33. M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 106, 032105 (2015)

    Article  ADS  Google Scholar 

  34. M. Slomski, N. Blumenschein, P.P. Paskov, J.F. Muth, T. Paskova, J. Appl. Phys. 121, 235104 (2017)

    Article  ADS  Google Scholar 

  35. Z.H. Sun, Y.L. Zhou, S.Y. Dai, L.Z. Cao, Z.H. Chen, Appl. Phys. A 91, 1 (2008)

    Google Scholar 

  36. M. Trassin, N. Viart, G. Versini, S. Barre, G. Pourroy, J. Lee, W. Jo, K. Dumesnil, C. Dufour, S. Robert, J. Mater. Chem. 19, 8876 (2009)

    Article  Google Scholar 

  37. S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, A. Garg, Phys. Rev. Lett. 111, 087601 (2013)

    Article  ADS  Google Scholar 

  38. K. Sharma, V.R. Reddy, A. Gupta, R.J. Choudhary, D.M. Phase, V. Ganesan, Appl. Phys. Lett. 102, 212401 (2013)

    Article  ADS  Google Scholar 

  39. W. Cui, X.L. Zhao, Y.H. An, D.Y. Guo, X.Y. Qing, Z.P. Wu, P.G. Li, L.H. Li, C. Can, W.H. Tang, J. Phys. D Appl. Phys. 50, 135109 (2017)

    Article  ADS  Google Scholar 

  40. D.Y. Guo, Y.P. Qian, Y.L. Su, H.Z. Shi, P.G. Li, J.T. Wu, S.L. Wang, C. Cui, W.H. Tang, AIP Adv. 7, 065312 (2017)

    Article  ADS  Google Scholar 

  41. W. Cui, X.L. Zhao, Y.H. An, G.S. Yao, Z.P. Wu, P.G. Li, L.H. Li, C. Cui, W.H. Tang, J. Nanosci. Nanotechnol. 18, 1220 (2018)

    Article  Google Scholar 

  42. S. Nandy, B. Saha, M.K. Mitra, K.K. Chattopadhyay, J. Mater. Sci. 42, 5766 (2007)

    Article  ADS  Google Scholar 

  43. M.J. Zheng, L.D. Zhang, X.Y. Zhang, J. Zhang, G.H. Li, Chem. Phys. Lett. 334, 298 (2001)

    Article  ADS  Google Scholar 

  44. S.A. Khan, M. Zulfequar, Z.H. Khan, M. Husain, Opt. Acta Int. J. Opt. 50, 51 (2003)

    Google Scholar 

  45. M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, H. Hosono, Thin Solid Films 411, 134 (2002)

    Article  ADS  Google Scholar 

  46. K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano, H. Hosono, Appl. Phys. Lett. 88, 092106 (2006)

    Article  ADS  Google Scholar 

  47. H.L. Wei, Z.W. Chen, Z.P. Wu, W. Cui, Y.Q. Huang, W.H. Tang, AIP Adv. 7, 115216 (2017)

    Article  ADS  Google Scholar 

  48. S. Nakagomi, Y. Kokubun, J. Cryst. Growth 349, 12 (2012)

    Article  ADS  Google Scholar 

  49. H. Ohta, M. Orita, M. Hirano, K. Ueda, H. Hosono, Int. J. Mod. Phys. B 16, 173 (2002)

    Article  ADS  Google Scholar 

  50. J. Narayan, B.C. Larson, J. Appl. Phys. 93, 278 (2003)

    Article  ADS  Google Scholar 

  51. S. Müller, H.V. Wenckstern, D. Splith, F. Schmidt, M. Grundmann, Phys. Status Solidi 211, 34 (2014)

    Article  ADS  Google Scholar 

  52. M. Orita, H. Ohta, H. Hiramatsu, M. Hirano, S. Den, M. Sasaki, T. Katagiri, H. Mimura, H. Hosono, Rev. Sci. Instrum. 72, 3340 (2001)

    Article  ADS  Google Scholar 

  53. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441 (2008)

    Article  ADS  Google Scholar 

  54. P.C.J. Graat, M.A.J. Somers, Appl. Surf. Sci. 100–101, 36 (1996)

    Article  ADS  Google Scholar 

  55. D.Y. Guo, Y.H. An, W. Cui, Y.S. Zhi, X.L. Zhao, M. Lei, L.H. Li, P.G. Li, Z.P. Wu, W.H. Tang, Sci. Rep. 6, 25166 (2016)

    Article  ADS  Google Scholar 

  56. J. Stoch, A. Capecki, Surf. Interface Anal. 15, 206 (2010)

    Article  Google Scholar 

  57. J. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, M. Tanaka, Phys. Rev. B 58, R4211 (1998)

    Article  ADS  Google Scholar 

  58. D.Y. Guo, Z.P. Wu, Y.H. An, X.J. Li, X.C. Guo, X.L. Chu, C.L. Sun, M. Lei, L.H. Li, L.X. Cao, P.G. Li, W.H. Tang, J. Mater. Chem. C. 3, 1830 (2015)

    Article  Google Scholar 

  59. M. Ji, X.Y. Zhang, J.H. Wang, S.E. Park, J. Mol. Catal. A: Chem. 371, 36 (2013)

    Article  Google Scholar 

  60. S.M. Yan, K. Liu, G. Lv, Z.Q. Fan, J. Alloy. Compd. 551, 40 (2013)

    Article  Google Scholar 

  61. Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, Appl. Phys. Lett. 90, 031912 (2007)

    Article  ADS  Google Scholar 

  62. U. Gerstmann, A.T. Blumenau, H. Overhof, Phys. Rev. B 63, 075204 (2001)

    Article  ADS  Google Scholar 

  63. T. Graf, M. Gjukic, M. Hermann, M.S. Brandt, J. Appl. Phys. 93, 9697 (2003)

    Article  ADS  Google Scholar 

  64. T.C. Lovejoy, R. Chen, E.N. Yitamben, V. Shutthanadan, J. Appl. Phys. 111, 123716 (2012)

    Article  ADS  Google Scholar 

  65. H. He, W. Li, H.Z. Xing, E.J. Liang, Adv. Mater. Res. 535–537, 36 (2012)

    Article  Google Scholar 

  66. D.C. Look, J.H. Leach, R. Metzger, J. Appl. Phys. 121, 065702 (2017)

    Article  ADS  Google Scholar 

  67. S.R. Thomas, G. Adamopoulos, Y.H. Lin, H. Faber, L. Sygellou, E. Stratakis, N. Pliatsikas, P.A. Patsalas, T.D. Anthopoulos, Appl. Phys. Lett. 105, 092105 (2014)

    Article  ADS  Google Scholar 

  68. G.X. Liu, F.K. Shan, W.J. Lee, B.C. Shin, S.C. Kim, H.S. Kim, C.R. Cho, Integr. Ferroelectr. 94, 11 (2007)

    Article  Google Scholar 

  69. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, J. Vac. Sci. Technol. B 22, 120 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 51572241, 51572033), Beijing Municipal Natural Science Foundation (Grant no. 2154055) and China Postdoctoral Science Foundation Funded Project (Grant no. 2014M550661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoyou Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Wu, H., Zhi, Y. et al. High-insulating β-Ga2O3 thin films by doping with a valence controllable Fe element. Appl. Phys. A 124, 611 (2018). https://doi.org/10.1007/s00339-018-2037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2037-z

Navigation