Skip to main content
Log in

Magnetic Nanocomposites Graphene Oxide/Magnetite + Cobalt Ferrite (GrO/Fe3O4 + CoFe2O4) for Magnetic Hyperthermia

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In this study we have investigated new magnetic nanocomposites (MNCs) graphene oxide (GrO)/magnetite (Fe3O4) + cobalt ferrite (CoFe2O4) of various concentrations that were synthesized by the mechanochemical method—the process of mechanical grinding in a ball mill in the aqueous medium of graphene oxide and preliminarily synthesized powders of magnetite and cobalt ferrite. We have obtained and studied MNCs GrO/Fe3O4 + CoFe2O4 obtained by grinding with various contents of components (in wt %), namely: 50/40 + 10; 50/25 + 25; 50/10 + 40; and 50/0 + 50. The synthesized MNCs GrO/Fe3O4 + CoFe2O4 have been investigated by X-ray diffraction method, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, a vibrating sample magnetometer, and Mössbauer spectroscopy. With the help of Mössbauer investigations, the phase composition, magnetic state, and structure of synthesized MNCs GrO/Fe3O4 + CoFe2O4 have been established, which is important for creating high-performance materials for various applications. The heterogeneity of the MNCs obtained opens prospects for their biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Handbook of Nanomaterials for Industrial Applications, Ed. by Ch. Mustansar Hussain (Elsevier, Amsterdam, 2018).

  2. K. K. Kefenia, T. A. M. Msagati, T. T. I. Nkambule, and B. B. Mamba, Mater. Sci. Eng. C 107, 110314 (2020).

    Article  Google Scholar 

  3. K. Wu, D. Su, J. Liu, R. Saha, and J.-P. Wang, Nanotechnology 30, 502003 (2019).

    Article  Google Scholar 

  4. N. D. Thorat, S. A. M. Tofail, B. von Rechenberg, H. Townley, G. Brennan, C. Silien, H. M. Yadav, T. Steffen, and J. Baue, Appl. Phys. Rev. 6, 041306 (2019).

    Article  ADS  Google Scholar 

  5. F. Ahmad and Y. Zhou, Chem. Res. Toxicol. 30, 492 (2017).

    Article  Google Scholar 

  6. S. Y. Srinivasan, K. M. Paknikar, D. Bodas, and V. Gajbhiye, Nanomedicine 13, 1221 (2018).

    Article  Google Scholar 

  7. K. Dukenbayev, I. V. Korolkov, D. I. Tishkevich, A. L. Kozlovskiy, S. V. Trukhanov, Y. G. Gorin, E. E. Shumskaya, E. Y. Kaniukov, D. A. Vinnik, M. V. Zdorovets, M. Anisovich, A. V. Trukhanov, D. Tosi, and C. Molardi, Nanomaterials 9, 494 (2019).

    Article  Google Scholar 

  8. K. Simeonidis, S. Liebana-Vinas, U. Wiedwald, Z. Ma, Z.-A. Li, M. Spasova, O. Patsia, E. Myrovali, A. Makridis, D. Sakellari, I. Tsiaoussis, G. Vourlias, M. Farle, and M. Angelakeris, RSC Adv. 6, 53107 (2016).

  9. W. Xiao, X. Liu, X. Hong, Y. Yang, Y. Lv, J. Fang, and J. Ding, Cryst. Eng. Commun. 17, 3652 (2015).

    Article  Google Scholar 

  10. L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, Chem. Rev. 112, 5818 (2012).

    Article  Google Scholar 

  11. A. B. Salunkhe, V. M. Khot, N. D. Thorat, M. R. Phadatare, C. I. Sathish, D. S. Dhawale, and S. H. Pawar, Appl. Surf. Sci. 264, 598 (2013).

    Article  ADS  Google Scholar 

  12. S. Dutz, N. Buske, J. Landers, C. Gräfe, H. Wend, and J. H. Clement, Nanomaterials 10, 1019 (2020).

    Article  Google Scholar 

  13. M. Hahsler, J. Landers, T. Nowack, S. Salamon, M. Zimmermann, S. Heißler, H. Wende, and S. Behrens, Inorg. Chem. 59, 3677 (2020).

    Article  Google Scholar 

  14. M. S. A. Darwish, H. Kim, H. Lee, C. Ryu, J. Y. Lee, and J. Yoon, Nanomaterials 10, 991 (2020).

    Article  Google Scholar 

  15. D. Polishchuk, N. Nedelko, S. Solopan, A. Ślawska-Waniewska, V. Zamorskyi, A. Tovstolytkin, and A. Belous, Nanoscale Res. Lett. 13, 67 (2018).

    Article  ADS  Google Scholar 

  16. J. Robles, R. Das, M. Glassell, M.-H. Phan, and H. Srikanth, AIP Adv. 8, 056719 (2018).

    Article  ADS  Google Scholar 

  17. O. V. Yelenich, S. O. Solopan, J. M. Greneche, and A. G. Belous, Solid State Sci. 46, 19 (2015).

    Article  ADS  Google Scholar 

  18. P. A. Kumar, S. Ray, S. Chakraverty, and D. D. Sarma, Appl. Phys. Lett. 103, 102406 (2013).

    Article  ADS  Google Scholar 

  19. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  20. I. S. Lyubutin, A. O. Baskakov, S. S. Starchikov, K.‑Y. Shih, C.-R. Lin, Y.-T. Tseng, S.-S. Yang, Z.‑Y. Han, Yu. L. Ogarkova, V. I. Nikolaichik, and A. S. Avilov, Mater. Chem. Phys. 219, 411 (2018).

    Article  Google Scholar 

  21. S. V. Poroiskii, T. A. Nosaeva, and N. V. Konyaeva, Volgogr. Nauch.-Med. Zh., No. 3, 9 (2014).

  22. E. Peng, E. S. G. Choo, P. Chandrasekharan, C. T. Yang, J. Ding, K. H. Chuang, and J. M. Xue, Small 8, 3620 (2012).

    Article  Google Scholar 

  23. I. M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, and C. V. V. Muralee Gopi, Magnetochemistry 5, 67 (2019).

    Article  Google Scholar 

  24. H. P. Cong, J. J. He, Y. Lu, and S. H. Yu, Small 6, 169 (2010).

    Article  Google Scholar 

  25. X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, and Y. Chen, J. Mater. Chem. 19, 2710 (2009).

    Article  Google Scholar 

  26. F. Li, Y. Huang, K. Huang, J. Lin, and P. Huang, Int. J. Mol. Sci. 21, 390 (2020).

    Article  Google Scholar 

  27. V. Narayanaswamy, I. M. Obaidat, A. S. Kamzin, S. Latiyan, S. Jain, H. Kumar, C. Srivastava, S. Alaabed, and B. Issa, Int. J. Mol. Sci. 20, 3368 (2019).

    Article  Google Scholar 

  28. V. Narayanaswamy, H. Kumar, C. Srivastava, S. Alaabed, M. Aslam, A. Mallya, and I. Obaidat, Mater. Express 10, 314 (2020).

    Article  Google Scholar 

  29. B. Saiphaneendra and C. Srivastava, J. Miner. Met. Mater. Soc. 69, 1143 (2017).

    Article  Google Scholar 

  30. M. Sorescu and M. Allwes, MRS Adv. 4, 155 (2019).

    Article  Google Scholar 

  31. S. Ramachandran, M. Sathishkumar, N. K. Kothurkar, and R. Senthilkumar, IOP Conf. Ser.: Mater. Sci. Eng. 310, 012139 (2018).

  32. R. Shu, J. Zhang, G. Changlian, Y. Wu, Z. Wan, J. Shi, Y. Liu, and M. Zheng, Chem. Eng. J. 384, 123266 (2020).

    Article  Google Scholar 

  33. M. Sorescu, M. Knauss, A. Perrin, and M. McHenry, MRS Adv. 5, 1731 (2020).

    Article  Google Scholar 

  34. R. Singh, M. Kumar, L. Tashi, H. Khajuria, and H. N. Sheikh, Nanochem. Res. 3, 149 (2018).

    Google Scholar 

  35. I. F. Gareev, O. A. Beilerli, V. N. Pavlov, S. Zhao, X. Chen, Z. Zheng, C. Shen, and J. Sun, Kreat. Khir. Onkol. 9, 66 (2019).

    Google Scholar 

  36. K. Mahmoudi, A. Bouras, D. Bozec, R. Ivkov, and C. Hadjipanayis, Int. J. Hypertherm. 34, 1316 (2018).

    Article  Google Scholar 

  37. A. S. Kamzin, I. M. Obaidat, A. A. Valliulin, V. G. Semenov, and I. A. Al-Omari, Phys. Solid State 62, 1933 (2020);

    Article  ADS  Google Scholar 

  38. A. S. Kamzin, I. M. Obaidat, A. A. Valliulin, V. G. Semenov, and I. A. Al-Omari, Phys. Solid State 62, 2167 (2020).

    Article  ADS  Google Scholar 

  39. K. Simeonidis, C. Martinez-Boubeta, D. Serantes, S. Ruta, O. Chubykalo-Fesenko, R. Chantrell, J. Oro-Sole, Ll. Balcells, A. S. Kamzin, R. A. Nazipov, A. Makridis, and M. Angelakeris, ACS Appl. Nano Mater. 3, 4465 (2020).

    Google Scholar 

  40. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  41. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  42. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012);

    Article  ADS  Google Scholar 

  43. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1622, 40 (2014).

    Article  ADS  Google Scholar 

  44. A. Alazmi, V. Singaravelu, N. M. Batra, J. Smajic, M. Alyami, N. M. Khashab, and Pedro M. F. J. Costa, RSC Adv. 9, 6299 (2019).

    Article  ADS  Google Scholar 

  45. I. S. Lyubutin, N. E. Gervits, S. S. Starchikov, C.‑R. Lin, Y.-T. Tseng, K.-Y. Shih, C.-C. Wang, I.‑H. Chen, Yu. L. Ogarkova, and N. Yu. Korotkov, Smart Mater. Struct. 25, 015022 (2016).

    Article  ADS  Google Scholar 

  46. N. Venkatesha, P. Poojar, Y. Qurishi, S. Geethanath, and C. Srivastava, J. Appl. Phys. 117, 154702 (2015).

    Article  ADS  Google Scholar 

  47. D. Kovacheva, T. Ruskov, P. Krystev, S. Asenov, N. Ta-nev, I. Mönch, R. Koseva, U. Wolff, T. Gemming, M. Markova-Velichkova, D. Nihtianova, and K.‑F. Arndt, Bulg. Chem. Commun. 44, 90 (2012).

    Google Scholar 

  48. S. Moosavi, S. Zakaria, C. H. Chia, S. Gan, N. A. Azahari, and H. Kaco, Ceram. Int. 43, 7889 (2017).

    Article  Google Scholar 

  49. M. S. Al Maashani, K. A. Khalaf, A. M. Gismelseed, and I. A. Al-Omari, J. Alloys Compd. 817, 152786 (2020).

    Article  Google Scholar 

  50. D. A. Balaev, S. V. Semenov, A. A. Dubrovskii, A. A. Krasikov, S. I. Popkov, S. S. Yakushkin, V. L. Kirillov, and O. N. Mart’yanov, Phys. Solid State 62, 285 (2020).

    Article  ADS  Google Scholar 

  51. K. Sartori, G. Cotin, C. Bouillet, V. Halté, S. Bégin-Colin, F. Choueikani, and B. P. Pichon, Nanoscale 11, 12946 (2019).

    Article  Google Scholar 

  52. Yu. A. Fedotova, V. G. Baev, A. I. Lesnikovich, I. A. Milevich, and S. A. Vorob’eva, Phys. Solid State 53, 694 (2011).

    Article  ADS  Google Scholar 

  53. N. Thomas, V. D. Sudheesh, H. K. Choudhary, B. Sahoo, S. S. Nair, N. Lakshmi, and V. Sebastian, J. Supercond. Nov. Magn. 32, 2973 (2019).

    Article  Google Scholar 

  54. A. L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  ADS  Google Scholar 

  55. A. Kaniyoor and S. Ramaprabhu, AIP Adv. 2, 032183 (2012).

    Article  ADS  Google Scholar 

  56. J. G. Ovejero, A. Mayoral, M. Cañete, M. García, A. Hernando, P. Herrasti, and J. Nanosci, Nanotechnology 19, 2008 (2019).

    Google Scholar 

  57. E. Umut, M. Coşkun, H. Güngüneş, V. Dupuis, and A. S. Kamzin, J. Supercond. Nov. Magn. (2021). https://doi.org/10.1007/s10948-020-05800-y

  58. G. A. Sawatzky, F. van der Woude, and A. H. Morrish, Phys. Rev. 187, 747 (1969).

    Article  ADS  Google Scholar 

  59. G. A. Sawatzky, F. van der Woude, and A. H. Morrish, J. Appl. Phys. 39, 1204 (1968).

    Article  ADS  Google Scholar 

  60. T. A. S. Ferreira, J. C. Waerenborgh, M. H. R. M. Mendonş, M. R. Nunes, and F. M. Costa, Solid State Sci. 5, 383 (2003).

    Article  ADS  Google Scholar 

  61. W. Kundig, Nucl. Instrum. Methods Phys. Res. 48, 219 (1967).

    Article  ADS  Google Scholar 

  62. J. M. D. Coey, Phys. Rev. Lett. 27, 1140 (1971).

    Article  ADS  Google Scholar 

  63. R. L. Arents, Yu. V. Maksimov, I. P. Suzdalev, V. K. Imshennik, and Yu. F. Krupyanskii, Fiz. Met. Metalloved. 36, 277 (1973).

    Google Scholar 

  64. S. V. Lomayeva, Phys. Met. Metallogr. 104, 388 (2007).

    Article  ADS  Google Scholar 

  65. V. A. Barinov, V. A. Tsurin, V. A. Kazantsev, and V. T. Surikov, Phys. Met. Metallogr. 115, 53 (2014).

    Article  ADS  Google Scholar 

  66. M. Sorescu and R. Trotta, MRC Adv. 1, 221 (2015).

  67. A. L. Ulyanov, A. I. Ulyanov, A. A. Chulkina, and E. P. Yelsukov, Bull. Russ. Acad. Sci.: Phys. 79, 1026 (2015).

    Article  Google Scholar 

  68. X. W. Liu, S. Zhao, Y. Meng, Q. Peng, A. K. Dearden, C. F. Huo, Y. Yang, Y. W. Li, and X. D. Wen, Sci. Rep. 6, 26184 (2016).

    Article  ADS  Google Scholar 

  69. X. W. Liu, Z. Cao, S. Zhao, R. Gao, Y. Meng, J. X. Zhu, C. Rogers, C. F. Huo, Y. Yang, Y. W. Lim, and X. D. Wen, J. Phys. Chem. C 121, 21390 (2017).

    Article  Google Scholar 

  70. H. Khurshid, Y. A. Abdu, E. Devlin, B. A. Issa, and G. C. Hadjipanayis, RSC Adv. 10, 28958 (2020).

  71. K. Loizou, S. Mourdikoudis, A. Sergides, M. O. Besenhard, C. Sarafidis, K. Higashimine, O. Kalogirou, S. Maenosono, N. Thi, K. Thanh, and A. Gavriilidis, ACS Appl. Mater. Interfaces 12, 28520 (2020).

    Article  Google Scholar 

  72. E. Bauer-Grosse and G. le Caër, Philos. Mag. 56, 485 (1987).

    Article  ADS  Google Scholar 

  73. I. S. Lyubutin, C.-R. Lin, Y.-T. Tseng, A. Spivakov, A. O. Baskakov, S. S. Starchikov, K. O. Funtov, C.‑J. Jhang, Y.-J. Tsai, and H.-S. Hsu, Mater. Charact. 150, 213 (2019).

    Article  Google Scholar 

  74. J. Yu, F. Chen, W. Gao, Y. Ju, X. Chu, S. Che, F. Sheng, and Y. Hou, Nanoscale Horiz. 2, 81 (2017).

    Article  ADS  Google Scholar 

  75. A. Bordet, R. F. Landis, Y. W. Lee, G. Y. Tonga, J. M. Asensio, C. H. Li, P.-F. Fazzini, K. Soulantica, V. M. Rotello, and B. Chaudret, ACS Nano 13, 2870 (2019).

    Article  Google Scholar 

  76. A. Gangwar, S. S. Varghese, S. S. Meena, C. L. Prajapat, N. Gupta, and N. K. Prasad, J. Mag. Magn. Mater. 481, 251 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

I. M. Obaidat and I. A. Al-Omari are grateful for the financial support of the UAEU Advanced Research Program (UPAR), project no. 31S364, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by E. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzin, A.S., Obaidat, I.M., Kozlov, V.S. et al. Magnetic Nanocomposites Graphene Oxide/Magnetite + Cobalt Ferrite (GrO/Fe3O4 + CoFe2O4) for Magnetic Hyperthermia. Phys. Solid State 63, 998–1008 (2021). https://doi.org/10.1134/S106378342107009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342107009X

Keywords:

Navigation