Skip to main content
Log in

Magnetic Properties of MFeCrO4 (M = Co/Ni) Prepared by Solution Combustion Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Single phase MFeCrO4 (M = Co/Ni) nanosized samples are prepared by solution combustion method using glycine as fuel. Lattice parameter obtained after Rietveld refinement of the powder x-ray diffraction pattern of CoCrFeO4 and NiCrFeO4 samples are 8.374 and 8.325 Å and corresponding crystallite sizes are 40 and 27 nm, respectively. FTIR spectra of both samples show tetrahedral and octahedral metal oxygen bond stretching peaks at 596 and 488 cm−1, indicating spinel phase formation. DC magnetisation study indicates that both samples are ferrimagnetic at room temperature, with CoCrFeO4 having a higher value of saturation magnetisation. Mössbauer spectra indicate the presence of magnetic relaxation in the samples. Also, the strength of interaction with nearest neighbour Fe3+ cations is higher in NiCrFeO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Groenou, A.B., Bongers, P.F., Stuyts, A.L.: Magnetism , microstrueture and crystal chemistry of spinel ferrites. Mater. Sci. Eng. 3, 317–392 (1968)

    Article  Google Scholar 

  2. Sickafus, K.E., Wills, J.M., Grimes, N.W.: Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  Google Scholar 

  3. Thomas, N., Jithin, P.V., Sudheesh, V.D., Sebastian, V.: Magnetic and dielectric properties of magnesium substituted cobalt ferrite samples synthesized via one step calcination free solution combustion method. Ceram. Int. 43, 7305–7310 (2017)

    Article  Google Scholar 

  4. Anupama, M.K., Srinatha, N., Matteppanavar, S., et al.: Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 44, 4946–4954 (2018)

    Article  Google Scholar 

  5. Choodamani, C., Rudraswamy, B., Chandrappa, G.T.: Structural, electrical, and magnetic properties of Zn substituted magnesium ferrite. Ceram. Int. 42, 10565–10571 (2016)

    Article  Google Scholar 

  6. Mameli, V., Musinu, A., Ardu, A., et al.: Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale. 8, 10124–10137 (2016)

    Article  ADS  Google Scholar 

  7. Khalaf, K.A.M., Al Rawas, A.D., Gismelssed, A.M., et al.: Influence of Cr substitution on Debye-Waller factor and related structural parameters of ZnFe2-xCrxO4 spinels. J. Alloys Compd. 701, 474–486 (2017)

    Article  Google Scholar 

  8. Köseoğlu, Y.: Structural and magnetic properties of Cr doped NiZn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique. Ceram. Int. 41, 6417–6423 (2015)

    Article  Google Scholar 

  9. Sharma, S., Choudhary, N., Verma, M.K., et al.: Chromium incorporated nanocrystalline cobalt ferrite synthesized by combustion method: effect of fuel and temperature. Ceram. Int. 43, 13401–13410 (2017)

    Article  Google Scholar 

  10. Lyubutin, I.S., Lin, C., Starchikov, S.S., et al.: Structural, magnetic, and electronic properties of mixed spinel NiFe2–xCrxO4 nanoparticles synthesized by chemical combustion. Inorg. Chem. 56, 12469–12475 (2017)

    Article  Google Scholar 

  11. Azam, M., Adeela, N., Khan, U., et al.: Structural and magnetic investigations of Cr substituted NiFe2O4 nanostructures. J. Alloys Compd. 698, 228–233 (2017)

    Article  Google Scholar 

  12. Vader, V.T., Achary, S.N., Meena, S.S.: A facile gel-combustion route for fine particle synthesis of spinel ferrichromite: X-ray and Mössbauer study on effect of mg and Ni content. Mater. Res. Bull. 50, 172–177 (2014)

    Article  Google Scholar 

  13. Sijo, A.K.: Influence of fuel-nitrate ratio on the structural and magnetic properties of Fe and Cr based spinels prepared by solution self combustion method. J. Magn. Magn. Mater. 441, 672–677 (2017)

    Article  ADS  Google Scholar 

  14. Sijo, A.K., Dutta, D.P., Roy, M., Sudheesh, V.D.: Magnetic and dielectric properties of NiCrFeO4 prepared by solution self combustion method. Mater. Res. Bull. 94, 154–159 (2017)

    Article  Google Scholar 

  15. Navrotsky, A., Kleppa, O.: The thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29, 2701–2714 (1967)

    Article  Google Scholar 

  16. Han, M., Vestal, C.R., Zhang, Z.J.: Quantum couplings and magnetic properties of CoCrxFe2-xO4 (0<x<1 ) spinel ferrite nanoparticles synthesized with reverse micelle method. J. Phys. Chem. B. 108, 583–587 (2004)

    Article  Google Scholar 

  17. Varma, A., Mukasyan, A.S., Rogachev, A.S., Manukyan, K.V.: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016)

    Article  Google Scholar 

  18. Aruna, S.T., Mukasyan, A.S.: Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44–50 (2008)

    Article  ADS  Google Scholar 

  19. Hwang, C.-C., Wu, T.-Y., Wan, J., Tsai, J.-S.: Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. Mater. Sci. Eng. B. 111, 49–56 (2004)

    Article  Google Scholar 

  20. Nikmanesh, H., Eshraghi, M., Karimi, S.: Cation distribution, magnetic and structural properties of CoCrxFe2-xO4: effect of calcination temperature and chromium substitution. J. Magn. Magn. Mater. 471, 294 (2019)

    Article  ADS  Google Scholar 

  21. Singhal, S., Bhukal, S., Singh, J., et al.: Optical, X-ray diffraction, and magnetic properties of the cobalt-substituted nickel chromium ferrites (CrCoxNi1-xFeO4, x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) synthesized using sol-gel autocombustion method. J Nanotechnol. (2011). https://doi.org/10.1155/2011/930243

    Article  Google Scholar 

  22. Toksha, B.G., Shirsath, S.E., Mane, M.L., et al.: Autocombustion high-temperature synthesis, structural, and magnetic properties of CoCrxFe2-xO4 (0≤x≤1.0). J. Phys. Chem. C. 115, 20905–20912 (2011)

    Article  Google Scholar 

  23. Patange, S.M., Shirsath, S.E., Toksha, B.G., et al.: Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite. J. Appl. Phys. 106, 023914 (2009)

    Article  ADS  Google Scholar 

  24. Sudheesh, V.D., Thomas, N., Roona, N., et al.: Synthesis, characterization and influence of fuel to oxidizer ratio on the properties of spinel ferrite (MFe2O4, M = Co and Ni) prepared by solution combustion method. Ceram. Int. 43, 15002–15009 (2017)

    Article  Google Scholar 

  25. Sudheesh, V.D., Thomas, N., Roona, N., et al.: Synthesis of nanocrystalline spinel ferrite (MFe2O4, M = Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratio. J. Alloys Compd. 742, 577–586 (2018)

    Article  Google Scholar 

  26. Jain, S.R., Adiga, K.C., Pai Verneker, V.R.: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame. 40, 71–79 (1981)

    Article  Google Scholar 

  27. Lutterotti, L., Matthies, S., Wenk, H.-R., et al.: Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 81, 594–560 (1997)

    Article  ADS  Google Scholar 

  28. Choudhary, H.K., Kumar, R., Anupama, A.V., Sahoo, B.: Effect of annealing temperature on the structural and magnetic properties of Ba-Pb-hexaferrite powders synthesized by sol-gel auto-combustion method. Ceram. Int. 44, 8877–8889 (2018)

    Article  Google Scholar 

  29. Cullity, B.D., Graham, C.D.: Introduction to magnetic materials, Second. Wiley, Hoboken (2009)

    Google Scholar 

  30. Coey, J.M.D.: Magnetism and magnetic materials. Cambridge University Press, New York (2009)

    Google Scholar 

  31. Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Mössbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747–757 (1969)

    Article  ADS  Google Scholar 

  32. Chae, K.P., Lee, Y.B., Lee, J.G., Lee, S.H.: Crystallographic and magnetic properties of CoCrxFe2−xO4 ferrite powders. J. Magn. Magn. Mater. 220, 59–64 (2000)

    Article  ADS  Google Scholar 

  33. Hashim, M.: Electrical resistivity and M € ossbauer studies of Cr substituted Co nano ferrites. J. Alloys Compd. 694, 366–374 (2016)

    Google Scholar 

  34. Winell, S., Amcoff, Ö., Ericsson, T.: Cation ordering in NiFe2-xCrxO4 -spinels studied by Mössbauer spectroscopy in external fields. Phys Status Solidi B. 245, 1635–1640 (2008)

    Article  ADS  Google Scholar 

Download references

Funding

This work has been supported by UGC-Innovative and DST-FIST programmes of Nirmalagiri College, Nirmalagiri.N. Thomas acknowledges the financial support given by UGC Minor project, Department of Chemistry, Nirmalagiri College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Sudheesh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, N., Sudheesh, V.D., Choudhary, H.K. et al. Magnetic Properties of MFeCrO4 (M = Co/Ni) Prepared by Solution Combustion Method. J Supercond Nov Magn 32, 2973–2979 (2019). https://doi.org/10.1007/s10948-019-5080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5080-x

Keywords

Navigation