Skip to main content
Log in

Ruddlesden–Popper-Type La1.5 – xEuxPr0.5Ni0.9Cu0.1O4 + δ as a Potential Cathode Material for H-SOFCs

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

As a potential cathode material, the La1.5 – xEuxPr0.5Ni0.9Cu0.1O4 + δ (LEPNC-x, x = 0, 0.1, 0.2, 0.3, 0.4, 0.6, and 0.8) oxide is synthesized and studied. A pure Ruddlesden–Popper (R–P) type K2NiF4 structure can only be obtained for x = 0.4 and lower. The thermal expansion coefficient (TEC) of Eu-doped LEPNC-x stays almost constant with temperature, and decreases with increasing x. The optimal electrochemical performance of NiO-BZCY|BZCY|LEPNC-x single cells can be achieved for x = 0.2, although the corresponding electrical conductivity is the lowest. The result of electrochemical impedance spectra (EIS) also confirms this conclusion. EIS analysis suggests that the pre-exponential factor and activation energy of polarization resistance should be mainly determined by the electrical conductivity and oxygen ion diffusion of cathode material, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. F. S. da Silva and T. M. de Souza, Int. J. Hydrogen Energy 42, 26020 (2017).

    Article  Google Scholar 

  2. Z. X. Huang, B. Y. Li, and J. Liu, Phys. Status Solidi A 207, 2247 (2010).

    Article  ADS  Google Scholar 

  3. H. J. Kim, J. G. Yu, S. Hong, C. H. Park, Y. B. Kim, and J. An, Phys. Status Solidi A 214, 1700465 (2017).

    Article  ADS  Google Scholar 

  4. D. A. Medvedev, J. G. Lyagaeva, E. V. Gorbova, A. K. Demin, and P. Tsiakaras, Prog. Mater. Sci. 75, 38 (2016).

    Article  Google Scholar 

  5. Z. T. Tao, Q. F. Zhang, X. G. Xi, G. H. Hou, and L. Bi, Electrochem. Commun. 72, 19 (2016).

    Article  ADS  Google Scholar 

  6. Y. P. Xia, X. Xu, Y. Teng, H. L. Lv, Z. Z. Jin, D. Wang, R. R. Peng, and W. Liu, Ceram. Int. 46, 25453 (2020).

    Article  Google Scholar 

  7. M. Z. Uritsky and V. I. Tsidilkovski, Phys. Solid State 56, 2173 (2014).

    Article  ADS  Google Scholar 

  8. E. Yu. Pikalova, D. A. Medvedev, and A. F. Khasanov, Phys. Solid State 59, 694 (2017).

    Article  ADS  Google Scholar 

  9. Y. Yu, P. Ohodnicki, H. Abernathy, Y. Fan, T. Kalapos, and G. Hackett, Phys. Status Solidi A 215, 1701044 (2018).

    Article  ADS  Google Scholar 

  10. A. Yu. Stroeva, V. P. Gorelov, and A. V. Kuz’min, Phys. Solid State 58, 1521 (2016).

    Article  ADS  Google Scholar 

  11. X. Z. Peng, Y. F. Tian, Y. Liu, W. J. Wang, J. Chen, and J. Li, B. Chi, J. Pu, and J. Li, Int. J. Hydrogen Energy 45, 14461 (2020).

    Article  Google Scholar 

  12. M. Greenblatt, Curr. Opin. Solid State Mater. Sci. 2, 174 (1997).

    Article  ADS  Google Scholar 

  13. L. B. Lei, Z. T. Tao, T. Hong, X. M. Wang, and F. L. Chen, J. Power Sources 389, 1 (2018).

    Article  ADS  Google Scholar 

  14. Z. P. Shao and S. M. Haile, Nature (London, U.K.) 431, 170 (2004).

    Article  ADS  Google Scholar 

  15. S. L. Zhang, K. Chen, A. P. Zhang, C. X. Li, and C. J. Li, Ceram. Int. 43, 11648 (2017).

    Article  Google Scholar 

  16. Y. H. Liu, F. Z. Wang, B. Chi, J. Pu, L. Jian, and S. P. Jiang, J. Alloys Compd. 578, 37 (2013).

    Article  Google Scholar 

  17. V. Vibhu, A. Flura, A. Rougier, C. Nicollet, S. Fourcade, T. Hungria, J. C. Grenier, and J. M. Bassat, J. Energy Chem. 46, 62 (2020).

    Article  Google Scholar 

  18. X. X. Zhang, H. Zhang, and X. B. Liu, J. Power Sources 269, 412 (2014).

    Article  ADS  Google Scholar 

  19. J. F. Basbus, F. D. Prado, A. Caneiro, and L. V. Mogni, J. Electroceram. 32, 311 (2014).

    Article  Google Scholar 

  20. Y. Wang, F. J. Jin, X. H. Hao, B. B. Niu, P. Lyu, and T. M. He, J. Alloys Compd. 829, 154470 (2020).

    Article  Google Scholar 

  21. V. V. Kharton, E. V. Tsipis, E. N. Naumovich, A. Thursfield, M. V. Patrakeev, V. A. Kolotygin, J. C. Waerenborgh, and I. S. Metcalfe, J. Solid State Chem. 181, 1425 (2008).

    Article  ADS  Google Scholar 

  22. P. M. Geffroy, M. Reichmann, T. Chartier, J. M. Bassat, and J. C. Grenier, J. Membr. Sci. 451, 234 (2014).

    Article  Google Scholar 

  23. V. A. Sadykov, E. Y. Pikalova, A. A. Kolchugin, A. V. Fetisov, E. M. Sadovskaya, E. A. Filonova, N. F. Eremeev, V. B. Goncharov, A. V. Krasnov, P. I. Skriabin, A. N. Shmakov, Z. S. Vinokurov, A. V. Ishchenko, and S. M. Pikalov, Int. J. Hydrogen Energy 45, 13625 (2020).

    Article  Google Scholar 

  24. Q. J. Zhou, L. W. Qu, T. Zhang, Y. He, C. Zhao, M. C. Wang, T. Wei, and Y. H. Zhang, J. Alloys Compd. 824, 153967 (2020).

    Article  Google Scholar 

  25. X. Y. Li, D. M. Huan, N. Shi, Y. Yang, Y. H. Wan, C. R. Xia, R. R. Peng, and Y. L. Lu, Int. J. Hydrogen Energy 45, 17736 (2020).

    Article  Google Scholar 

  26. J. Hyodo, K. Tominaga, Y. W. Ju, S. Ida, and T. Ishihara, Solid State Ionics 256, 5 (2014).

    Article  Google Scholar 

  27. N. Han, Q. Wei, S. G. Zhang, N. T. Yang, and S. M. Liu, J. Alloys Compd. 806, 153 (2019).

    Article  Google Scholar 

  28. C. Zhao, Q. J. Zhou, T. Zhang, L. W. Qu, X. Yang, and T. Wei, Mater. Res. Bull. 113, 25 (2019).

    Article  Google Scholar 

  29. M. Garali, M. Kahlaoui, B. Mohammed, A. Mater, C. ben Azouz, and C. Chefi, Int. J. Hydrogen Energy 44, 11020 (2019).

    Article  Google Scholar 

  30. Z. Z. Zhang, L. H. Chen, Q. H. Li, T. F. Song, J. R. Su, B. Cai, and H. He, Solid State Ionics 323, 25 (2018).

    Article  Google Scholar 

  31. F. Lu, M. J. Yang, Y. J. Shi, C. H. Wu, X. S. Jia, H. He, J. R. Su, M. J. Chao, and B. Cai, Ceram. Int. 47, 1095 (2021).

    Article  Google Scholar 

  32. H. L. Dai, E. H. Da’as, S. P. Shafi, H. Q. Wang, and L. Bi, J. Eur. Ceram. Soc. 38, 2903 (2018).

    Article  Google Scholar 

  33. Z. B. Zhang, J. Wang, Y. B. Chen, S. Z. Tan, Z. P. Shao, and D. J. Chen, J. Power Sources 385, 76 (2018).

    Article  ADS  Google Scholar 

  34. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  ADS  Google Scholar 

  35. Y. Liu, Y. J. Shi, C. H. Wu, F. Lu, H. He, J. R. Su, and B. Cai, Solid State Ionics 348, 115279 (2020).

    Article  Google Scholar 

  36. B. Cai, T. F. Song, J. R. Su, H. He, and Y. Liu, Solid State Ionics 353, 115379 (2020).

    Article  Google Scholar 

  37. L. L. Zhang, G. B. Yao, Z. Y. Song, B. B. Niu, W. Long, L. Zhang, Y. Shen, and T. M. He, Electrochim. Acta 212, 522 (2016).

    Article  Google Scholar 

  38. M. V. Sandoval, C. Cárdenas, E. Capoen, C. Pirovano, P. Roussel, and G. H. Gauthier, Electrochim. Acta 304, 415 (2019).

    Article  Google Scholar 

  39. J. F. Gao, X. Q. Liu, D. K. Peng, and G. Y. Meng, Catal. Today 82, 207 (2003).

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. U2004167 and 1974316).

Author information

Authors and Affiliations

Authors

Contributions

Changhui Wu: conceptualization, methodology, validation, formal analysis, investigation, writing-original draft. Yunjia Shi: investigation, methodology, formal analysis. Fei Lu: methodology, validation. Xusheng Jia: methodology, validation. Jinrui Su: formal analysis, resources. Hao He: formal analysis, resources. Bin Cai: conceptualization, formal analysis, investigation, writing review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to B. Cai.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C.H., Shi, Y.J., Lu, F. et al. Ruddlesden–Popper-Type La1.5 – xEuxPr0.5Ni0.9Cu0.1O4 + δ as a Potential Cathode Material for H-SOFCs. Phys. Solid State 63, 775–784 (2021). https://doi.org/10.1134/S1063783421050218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421050218

Keywords:

Navigation