Skip to main content
Log in

Ab Initio Modeling of the Effect of the Position and Properties of Ordered Vacancies on the Magnetic State of a Graphene Monolayer

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The properties of hexagonal graphene are modeled by the ab initio pseudopotential method within the density functional theory taking into account the effect of the vacancies associated with the short-range order structure. The magnetic properties of graphene supercells with 18, 54, and 96 carbon atoms with mono- and divacancies are calculated. The introduction of carbon vacancies onto the graphene monolayer induces the appearance of a local magnetic moment. The numerical estimates of the value of the magnetic moment are executed for graphene supercells with 18, 54, and 96 carbon atoms with vacancies. The values of the magnetic moments are obtained, and the region of localization of spin density in the supercell with 96 carbon atoms which includes both short-range and long-range vacancies is determined. The effect of the distance between the vacancies on the value of the magnetic moment in a graphene supercell is studied. The dependences of the magnetic moment and distance between the vacancies in a graphene supercell with 96 atoms on the concentration of the vacancies are investigated. Using the calculations of the energy of formation of carbon vacancies in a graphene supercell, its dependences on the deformation of the graphene cell are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. S. Burch, D. Mandrus, and J. G. Park, Nature (London, U.K.) 563, 47 (2018). https://doi.org/10.1038/s41586-018-0631-z

    Article  ADS  Google Scholar 

  2. Li Hui, R. Shuangchen, and Z. Yu Jia, Adv. Mater. 31, 1900065 (2019). https://doi.org/10.1002/adma.201900065

    Article  Google Scholar 

  3. A. Avsar, H. Ochoa, F. Guinea, B. Ozyilmaz, B. J. van Wees, and I. J. Vera-Marun, Appl. Phys. Rev. Mod. Phys. 92, 21003 (2020). https://doi.org/10.1103/RevModPhys.92.021003

    Article  Google Scholar 

  4. T. Tang, N. J. Tang, Y. P. Zheng, X. G. Wan, Y. Liu, F. C. Liu, Q. H. Xu, and Y. W. Du, Sci. Rep. 5, 8448 (2015). https://doi.org/10.1038/srep08448

    Article  ADS  Google Scholar 

  5. L. Xie, X. Wang, J. Lu, Z. Ni, Z. Luo, H. Mao, R. Wang, Y. Wang, H. Huang, D. Qi, Rong Liu, T. Yu, Z. Shen, T. Wu, H. Peng, B. Özyilmaz, K. Loh, T. S. Andrew, and C. W. Ariando, Appl. Phys. Lett. 98, 193113 (2011). https://doi.org/10.1063/1.3589970

    Article  ADS  Google Scholar 

  6. T. Tang, F. C. Liu, Y. Liu, X. Y. Li, Q. H. Xu, Q. Feng, N. J. Tang, and Y. W. Du, Appl. Phys. Lett. 104, 123104 (2014). https://doi.org/10.1063/1.4869827

    Article  ADS  Google Scholar 

  7. J. Chen, W. L. Zhang, Y. Y. Sun, Y. P. Zheng, N. J. Tang, and Y. W. Du, Sci. Rep. 6, 26862 (2016). https://doi.org/10.1038/srep26862

    Article  ADS  Google Scholar 

  8. R. R. Nair, M. Sepioni, I. L. Tsai, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, and I. V. Grigorieva, Nat. Phys. 8, 199 (2012). https://doi.org/10.1038/NPHYS2183

    Article  Google Scholar 

  9. A. Ney, P. Papakonstantinou, A. Kumar, N.-G. Shang, and N. Peng, Appl. Phys. Lett. 99, 102504 (2011). https://doi.org/10.1063/1.3628245

    Article  ADS  Google Scholar 

  10. O. V. Yazyev and L. Helm, J. Phys.: Conf. Ser. 61, 1 (2007). https://doi.org/10.1088/1742-6596/61/1/255

    Article  Google Scholar 

  11. E. Kan, Z. Li, and J. Yang, Nano 3, 433 (2008). https://doi.org/10.1142/s1793292008001350

    Article  Google Scholar 

  12. B. Uchoa, V. N. Kotov, N. M. R. Peres, and A. H. Castro, Phys. Rev. Lett. 101, 026805 (2008). https://doi.org/10.1103/PhysRevLett.101.026805

  13. J.-H. Chen, W. G. Cullen, E. D. Williams, and M. S. Fuhrer, Nat. Phys. 7, 535 (2011). https://doi.org/10.1038/NPHYS1962

    Article  Google Scholar 

  14. X. Hong, S. H. Cheng, C. Herding, and J. Zhu, Phys. Rev. B 83, 085410 (2011). https://doi.org/10.1103/physrevb.83.085410

    Article  ADS  Google Scholar 

  15. Y.-B. Zhou, B.-H. Han, Z.-M. Liao, H.-C. Wu, and D.-P. Yu, Appl. Phys. Lett. 98, 222502 (2011). https://doi.org/10.1063/1.3595681

    Article  ADS  Google Scholar 

  16. J. Moser, H. Tao, S. Roche, F. Alzina, C. M. Sotomayor Torres, and A. Bachtold, Phys. Rev. B 81, 205445 (2010). https://doi.org/10.1103/PhysRevB.81.205445

    Article  ADS  Google Scholar 

  17. B. R. Matis, F. A. Bulat, A. L. Friedman, B. H. Houston, and J. W. Baldwin, Phys. Rev. B 85, 195437 (2012). https://doi.org/10.1103/PhysRevB.85.195437

    Article  ADS  Google Scholar 

  18. X. Hong, K. Zou, B. Wang, S.-H. Cheng, and J. Zhu, Phys. Rev. Lett. 108, 226602 (2012). https://doi.org/10.1103/PhysRevLett.108.226602

    Article  ADS  Google Scholar 

  19. K. M. McCreary, A. G. Swartz, W. Han, J. Fabian, and E. K. Kawakami, Phys. Rev. Lett. 109, 186604 (2012). https://doi.org/10.1103/physrevlett.109.186604

    Article  ADS  Google Scholar 

  20. M. M. Asadov, S. S. Guseinova, and V. F. Lukichev, Russ. Microelectron. 49, 314 (2020). https://doi.org/10.1134/S106373972005003021

    Article  Google Scholar 

  21. M. M. Asadov, S. N. Mustafaeva, S. S. Guseinova, and V. F. Lukichev, Phys. Solid State 62, 2224 (2020). https://doi.org/10.1134/S1063783420110037

    Article  ADS  Google Scholar 

  22. J.-J. Chen, H-C. Wu, D.-P. Yu, and Z.-M. Liao, Nanoscale 6, 8814 (2014). https://doi.org/10.1039/c3nr06892g

    Article  ADS  Google Scholar 

  23. V. Skrypnyk, Low Temp. Phys. 44, 1417 (2018). https://doi.org/10.1063/1.5060964

    Article  Google Scholar 

  24. A. A. Kuzubov, M. V. Serzhantova, A. S. Fedorov, F. N. Tomilin, and T. A. Kozhevnikova, JETP Lett. 93, 335 (2011). https://doi.org/10.1134/s0021364011060051

    Article  ADS  Google Scholar 

  25. A. A. Kuzubova, Yu. E. Anan’eva, A. S. Fedorova, F. N. Tomilina, and P. O. Krasnov, Russ. J. Phys. Chem. A 86, 1088 (2012). https://doi.org/10.1134/S0036024412070126

    Article  Google Scholar 

  26. A. S. Fedorov, D. A. Fedorov, Z. I. Popov, Yu. E. Anan’eva, N. S. Eliseeva, and A. A. Kuzubov, J. Exp. Theor. Phys. 139, 820 (2011). https://doi.org/10.1134/S1063776111040042

    Article  ADS  Google Scholar 

  27. Yu. A. Baimova, S. V. Dmitriev, A. V. Savin, and Yu. S. Kivshar’, Phys. Solid State 54, 866 (2012). https://doi.org/10.1134/s1063783412040026

    Article  ADS  Google Scholar 

  28. V. T. Barone and B. R. Tuttlea, AIP Adv. 10, 105115 (2020). https://doi.org/10.1063/5.0018703

    Article  ADS  Google Scholar 

  29. N. S. Eliseeva, A. A. Kuzubov, S. G. Ovchinnikov, M. V. Serzhantova, F. N. Tomilin, and A. S. Fedorov, JETP Lett. 95, 555 (2012). https://doi.org/10.1134/s0021364012110045

    Article  ADS  Google Scholar 

  30. K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys.: Condens. Matter 23, 202202 (2011). https://doi.org/10.1088/0953-8984/23/20/202202

    Article  ADS  Google Scholar 

  31. J. J. Palacios, J. Fernández-Rossier, and L. Brey, Phys. Rev. B 77, 195428 (2008). https://doi.org/10.1103/PhysRevB.77.195428

    Article  ADS  Google Scholar 

  32. X. Q. Dai, J. H. Zhao, M. H. Xie, Y. N. Tang, Y. H. Li, and B. Zhao, Phys. J. B 80, 343 (2011). https://doi.org/10.1140/epjb/e2011-10955-x

    Article  ADS  Google Scholar 

  33. D. Midtvedt and A. Croy, Condens. Matter 28, 045302 (2016). https://doi.org/10.1088/0953-8984/28/4/045302

    Article  ADS  Google Scholar 

  34. N. Akman and C. Ozdogan, J. Magn. Magn. Mater. 502, 166530 (2020). https://doi.org/10.1016/j.JMMM.2020.166530

    Article  Google Scholar 

  35. Y. V. Skrypnyk and V. M. Loktev, Low Temp. Phys. 42, 679 (2016). https://doi.org/10.1063/1.4961016

    Article  ADS  Google Scholar 

  36. F. Gao and S. Gao, Sci. Rep. 7, 1792 (2017). https://doi.org/10.1038/s41598-017-01881-3

    Article  ADS  Google Scholar 

  37. A. A. El-Barbary, R. H. Telling, C. P. Ewels, and M. I. Heggie, Phys. Rev. B 68, 144107 (2003). https://doi.org/10.1103/physrevb.68.144107

    Article  ADS  Google Scholar 

  38. Yuchen Ma, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, New J. Phys. 6, 1 (2004). https://doi.org/10.1088/1367-2630/6/1/068

    Article  MathSciNet  Google Scholar 

  39. B. R. K. Nanda, M. Sherafati, Z. S. Popovic, and S. Satpathy, New J. Phys. 14, 083004 (2012). https://doi.org/10.1088/1367-2630/14/8/083004

    Article  ADS  Google Scholar 

  40. A. V. Pokropivny, Y. Ni, Y. Chalopin, Y. M. Solonin, and S. Volz, Phys. Status Solidi B 251, 555 (2014). https://doi.org/10.1002/pssb.201300301

    Article  ADS  Google Scholar 

  41. V. Carnevali, I. Siloi, R. di Felice, and M. Fornari, arXiv: 2010.05803v1 [cond-mat.mtrl-sci.] (2020). https://doi.org/10.1039/D0CP04037A

  42. W. Kohn and L. J. Sham, Phys. Rev. B 140, 1133 (1965). https://doi.org/10.1103/physrev.140.a1133

    Article  ADS  Google Scholar 

  43. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  ADS  Google Scholar 

  44. W. A. Koch and M. C. Holthausen, Chemist’s Guide to Density Functional Theory, 2nd ed. (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

  45. M. Acik and Y. J. Chabal, Jpn. J. Appl. Phys. 50, 070101 (2011). https://doi.org/10.1143/JJAP.50.070101

    Article  ADS  Google Scholar 

  46. A. Ramasubramaniam, N. V. Medhekar, and V. B. Shenoy, Nanotechnology 20, 275705 (2009). https://doi.org/10.1088/0957-4484/20/27/275705

    Article  ADS  Google Scholar 

  47. X. He, T. He, Z. Wang, and M. Zhao, Phys. E (Amsterdam, Neth.) 42, 2451 (2010). https://doi.org/10.1016/j.physe.2010.06.010

  48. T. L. Makarova, Semiconductors 38, 615 (2004).

    Article  ADS  Google Scholar 

  49. Carbon-Based Magnetism: An Overview of Metal Free Carbon-Based Compounds and Materials, Ed. by T. Makarova and F. Palacio (Elsevier, Amsterdam, 2006).

    Google Scholar 

  50. A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, Chem. Phys. Lett. 418, 132 (2006). https://doi.org/10.1016/j.cplett.2005.10.106

    Article  ADS  Google Scholar 

  51. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2010). https://doi.org/10.1021/nn102598m

    Article  Google Scholar 

  52. H. Amara, J.-M. Roussel, C. Bichara, J.-P. Gaspard, and F. Ducastelle, Phys. Rev. B 79, 014109 (2009). https://doi.org/10.1103/physrevb.79.014109

    Article  ADS  Google Scholar 

Download references

Funding

This work was partially supported by the Science Development Foundation under the President of the Republic of Azerbaijan (grant no. E IF-BGM-3-BRFTF-2+/2017-15/05/1-M-13) and Russian Foundation for Basic Research (project no. Az_a2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Asadov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadov, M.M., Mustafaeva, S.N., Guseinova, S.S. et al. Ab Initio Modeling of the Effect of the Position and Properties of Ordered Vacancies on the Magnetic State of a Graphene Monolayer. Phys. Solid State 63, 670–679 (2021). https://doi.org/10.1134/S1063783421050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421050036

Keywords:

Navigation