Skip to main content
Log in

Ab Initio Calculations of the Electronic Properties and the Transport Phenomena in Graphene Materials

  • GRAPHENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The density functional theory (DFT) is used to study the electronic properties and the energy structure of monolayers of graphene supercells consisting of 18 and 54 carbon atoms and doped with Ge and Si atoms.The properties of graphene supercells are studied in the framework of the generalized gradient approximation (GGA). The Ge-doped graphene supercells with carbon atom vacancies are found to demonstrate the antiferromagnetic spin ordering; the local magnetic moments formed in carbon atoms are estimated. The density of states (DOS) and the supercell band structure are approximated. The Ge-doping of graphene in comparison with Si-doping is shown to noticeably open an energy gap in graphene. The physical regularities of the charge transfer are studied with the allowance for the temperature dependence of the electrical conductivity of a hydrogenated graphene (HGG). It is shown that, at temperatures 4–125 K, the HGG conductivity corresponds to the hopping mechanism of charge transfer with a variable jump distance. The density of localized states near the Fermi level, the jump distances, and the energy spread of the trap states near the Fermi level are determined. The concentration of localized states in the HGG energy gap is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. N. Mustafaeva, M. M. Asadov, and A. A. Ismailov, Phys. B (Amsterdam, Neth.) 453, 158 (2014). https://doi.org/10.1134/S1063783408110073

  2. S. N. Mustafaeva, M. M. Asadov, and A. A. Ismailov, Phys. Solid State 50, 2040 (2008). https://doi.org/10.1134/S1063783408110073

    Article  ADS  Google Scholar 

  3. S. M. Asadov, S. N. Mustafaeva, and A. N. Mammadov, J. Therm. Anal. Calorim. 133, 1135 (2018). https://doi.org/10. 1007/s10973-018-6967-7

  4. E. L. Wolf, Applications of Graphene (Springer, New York, 2014). https://doi.org/10.1007/978-3-319-03946-6

  5. T. Gupta, Graphene. Carbon (Springer, Cham, 2018), p. 197. https://doi.org/10.1007/978-3-319-66405-7_7

  6. H. H. Radamson, in Springer Handbook of Electronic and Photonic Materials, Ed. by S. Kasap and P. Capper (Springer, Cham, 2017), p. 1173. https://doi.org/10.1007/978-3-319-48933-9_48

  7. H. A. Tetlow, Theoretical Modeling of Epitaxial Graphene Growth on the Ir (111) Surface (Springer Int., Cham, 2017). https://doi.org/10.1007/978-3-319-65972-5

  8. D. A. C. Brownson and C. E. Banks, The Handbook of Graphene Electrochemistry (Springer, London, 2014). https://doi.org/10.1007/978-1-4471-6428-9

  9. X. Liu, Nanomechanics of Graphene and Design of Graphene Composites (Springer Nature, Singapore, 2019). https://doi.org/10.1007/978-981-13-8703-6

  10. D. van Tuan, Charge and Spin Transport in Disordered Graphene-Based Materials (Springer, Switzerland, 2016). https://doi.org/10.1007/978-3-319-25571-2

  11. L. Ruitao and M. Terrones, Mater. Lett. 78, 209 (2012). https://doi.org/10.1016/j.matlet.2012.04.033

    Article  Google Scholar 

  12. M. Yu. Arsent’ev, A. V. Prikhodko, A. V. Shmigel, T. L. Egorova, and M. V. Kalinina, J. Phys.: Conf. Ser. 661, 012028 (2015). https://doi.org/10.1088/1742-6596/661/1/012028

    Article  Google Scholar 

  13. M. M. Loghavi, H. Mohammadi-Manesh, R. Eqra, A. Ghasemi, and M. Babaiee, Phys. Chem. Res. 6, 871 (2018). https://doi.org/10.22036/pcr.2018.148943.1543

    Article  Google Scholar 

  14. E. Aktürk, C. Ataca, and S. Ciraci, Appl. Phys. Lett. 96, 123112 (2010). https://doi.org/10.1063/1.3368704

    Article  ADS  Google Scholar 

  15. J. G. Ren, Q. H. Wu, H. Tang, G. Hong, W. Zhang, and S. T. Lee, J. Mater. Chem. A 1, 1821 (2013). https://doi.org/10.1039/C2TA01286C

    Article  Google Scholar 

  16. M. Tripathi, A. Markevich, R. Boöttger, S. Facsko, E. Besley, J. Kotakoski, and T. Susi, ACS Nano 12, 4641 (2018). https://doi.org/10.1021/acsnano.8b01191

    Article  Google Scholar 

  17. T. S. Sreeprasad and V. Berry, Small 9, 341 (2012). https://doi.org/10.1002/smll.201202196

    Article  Google Scholar 

  18. G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.‑A. Chen, I.-S. Chen, C. W. Chen, and M. Chhowalla, Adv. Mater. 22, 505 (2010). https://doi.org/10.1002/adma.200901996

    Article  Google Scholar 

  19. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U. S.) 323, 610 (2009). https://doi.org/10.1126/science.1167130

    Article  ADS  Google Scholar 

  20. S. I. Yengejeh, S. A. Kazemi, and A. Öchsner, A Primer on the Geometry of Carbon Nanotubes and Their Modifications (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-14986-8_1

  21. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  Google Scholar 

  22. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999). https://doi.org/10.1103/RevModPhys.71.1253

    Article  ADS  Google Scholar 

  23. R. A. Evarestov, Quantum Chemistry of Solids, Springer Series in Solid-State Sciences (Springer, Berlin, 2012). https://doi.org/10.1007/978-3-642-30356-2

  24. T. Tsuneda, Density Functional Theory in Quantum Chemistry (Springer, Japan, 2014). https://doi.org/10.1007/978-4-431-54825-6

  25. M. Ernzerhofa and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).

    ADS  Google Scholar 

  26. S. A. Tolba, K. M. Gameel, B. A. Ali, H. A. Almossalami, and N. K. Allam, The DFT+U: Approaches, Accuracy and Applications (InTech Open, Rijeka, 2018). https://doi.org/10.5772/intechopen.72020

  27. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955). https://doi.org/10.1063/1.1740588

    Article  ADS  Google Scholar 

  28. R. F. W. Bader, Atoms in Molecules. A Quantum Theory (Clarendon, Oxford, 1994).

    Google Scholar 

  29. P. A. Denis, Chem. Phys. Lett. 492, 51 (2010). https://doi.org/10.1016/j.cplett.2010.04.038

    Article  Google Scholar 

  30. S. N. Khanna and A. W. Castleman, Quantum Phenomena in Clusters and Nanostrustures (Springer, Berlin, 2003). https://doi.org/10.1007/978-3-662-02606-9

  31. A. P. Guimarães, Principles of Nanomagnetism, 2nd ed. (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-59409-5

  32. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford Univ. Press, New York, 1979).

    Google Scholar 

  33. S. N. Mustafaeva and M. M. Asadov, Phys. Solid State 61, 1999 (2019). https://doi.org/10.1134/S1063783419110246

    Article  ADS  Google Scholar 

  34. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer Science, New York, 2013).

    Google Scholar 

Download references

Funding

This work was supported in part by the Foundation for Development of Science at the President of the Azerbaijan Republic (project no. EIF-BGM-3-BRFTF-2+/2017-15/05/1-M-13) and the Russian Foundation for Basic Research (project no. Az_a2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Asadov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadov, M.M., Mustafaeva, S.N., Guseinova, S.S. et al. Ab Initio Calculations of the Electronic Properties and the Transport Phenomena in Graphene Materials. Phys. Solid State 62, 2224–2231 (2020). https://doi.org/10.1134/S1063783420110037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110037

Keywords:

Navigation