Skip to main content
Log in

Spin Dynamics of Negatively Charged Excitons in InP/(In,Ga)P Quantum Dots in a Magnetic Field

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dynamics of the photoluminescence negative circular polarization of an ensemble of InP/(In,Ga)P quantum dots is studied. It was found that, the time-resolved polarization has no oscillations in the magnetic field in the Voigt geometry. At the same time, with increasing field, the polarization decreases to zero. This effect is explained by the specificities of the spin dynamics of a negatively charged exciton; in particular, by the fact that, in the ground state, its spin dynamics is determined by a heavy hole. It is shown that, in order that the photoluminescence be depolarized by a magnetic field, it is necessary to overcome the field of dynamically polarized nuclear spins acting on the electron spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. X. Marie, B. Urbaszek, O. Krebs, and T. Amand, Spin Physics in Semiconductors, Ed. M. I. Dyakonov (Springer, Berlin, 2008), Chap. 4, p. 91.

    Google Scholar 

  2. A. S. Bracker, D. Gammon, and V. L. Korenev, Semicond. Sci. Technol. 23, 114004 (2008).

    ADS  Google Scholar 

  3. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures (Springer, Berlin, 1997).

    MATH  Google Scholar 

  4. H. Yu, S. Lycett, C. Roberts, and R. Murray, Appl. Phys. Lett. 69, 4087 (1996).

    ADS  Google Scholar 

  5. R. I. Dzhioev, B. P. Zakharchenya, V. L. Korenev, P. E. Pak, D. A. Vinokurov, O. V. Kovalenkov, and I. S. Tarasov, Phys. Solid State 40, 1587 (1998).

    ADS  Google Scholar 

  6. S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Gérard, and T. Amand, Phys. Rev. Lett. 89, 207401 (2002).

    ADS  Google Scholar 

  7. I. A. Yugova, I. Ya. Gerlovin, V. G. Davydov, I. V. Ignatiev, I. E. Kozin, H. W. Ren, M. Sugisaki, S. Sugou, and Y. Masumoto, Phys. Rev. B 66, 235312 (2002).

    ADS  Google Scholar 

  8. S. V. Nekrasov, Yu. G. Kusrayev, I. A. Akimov, V. L. Korenev, L. Langer, and M. Salewski, J. Phys.: Conf. Ser. 741, 012189 (2016).

    Google Scholar 

  9. L. Lombez, P.-F. Braun, X. Marie, P. Renucci, B. Urbaszek, T. Amand, O. Krebs, and P. Voisin, Phys. Rev. B 75, 195314 (2007).

    ADS  Google Scholar 

  10. S. V. Nekrasov, I. A. Akimov, Yu. G. Kusrayev, D. R. Yakovlev, and M. Bayer, Phys. Rev. B 100, 235415 (2019).

    ADS  Google Scholar 

  11. D. Hessman, J. Persson, M-E. Pistol, C. Pryor, and L. Samuelson, Phys. Rev. B 64, 233308 (2001).

    ADS  Google Scholar 

  12. J. Kapaldo, S. Rouvimov, J. L. Merz, S. Oktyabrsky, S. A. Blundell, N. Bert, P. Brunkov, N. A. Kalyuzhnyy, S. A. Mintairov, S. Nekrasov, R. Saly, A. S. Vlasov, and A. M. Mintairov, J. Phys. D 49, 475301 (2016).

    ADS  Google Scholar 

  13. V. G. Fleisher and I. A. Merkulov, Optical Orientation, Ed. by F. Meier and B. Zakharchenya (North-Holland, Amsterdam, 1984), Chap. 5, p. 173.

    Google Scholar 

  14. C. Pryor, M.-E. Pistol, and L. Samuelson, Phys. Rev. B 56, 10404 (1997).

    ADS  Google Scholar 

  15. X. Marie, T. Amand, P. le Jeunne, M. Pillard, P. Renucci, L. E. Golub, V. D. Dymnikov, and E. L. Ivchenko, Phys. Rev. B 60, 5811 (1999).

    ADS  Google Scholar 

  16. T. Flissikowski, I. A. Akimov, A. Hundt, and F. Henneberger, Phys. Rev. B 68, 161309(R) (2003).

  17. A. V. Koudinov, I. A. Akimov, Yu. G. Kusrayev, and F. Henneberger, Phys. Rev. B 70, 241305(R) (2004).

  18. R. I. Dzhioev and V. L. Korenev, Phys. Rev. Lett. 99, 037401 (2007).

    ADS  Google Scholar 

  19. C. P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1990).

    Google Scholar 

  20. A. Löshe, Kerninduktion (VEB Deutscher Verlag Wissenschaften, Berlin, 1957).

    Google Scholar 

  21. A. Kurtenbach, K. Eberl, and T. Shitara, Appl. Phys. Lett. 66, 361 (1995).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.L. Korenev for helpful discussions and to M. Salewski for help with the experiments.

Funding

This work was supported by the Russian Science Foundation (grant no. 18-12-00352). The work of I.A. Akimov, D.R. Yakovlev, M. Kotur, and M. Bayer was supported by the Deutsche Forschungsgemeinschaft within the joint initiative of the International Collaborative Research Center TRR 160 (project B4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nekrasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, S.V., Kusraev, Y.G., Akimov, I.A. et al. Spin Dynamics of Negatively Charged Excitons in InP/(In,Ga)P Quantum Dots in a Magnetic Field. Phys. Solid State 62, 2033–2038 (2020). https://doi.org/10.1134/S1063783420110220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110220

Keywords:

Navigation