Skip to main content
Log in

Electronic Structure of an Ultrathin Molybdenum Oxide Film

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic structure of an ultra-thin molybdenum oxide film obtained by oxidation of molybdenum at an oxygen pressure of 1 Torr and the effect of adsorption of sodium atoms on its electronic structure are studied by photoelectron spectroscopy. Photoemission spectra from the valence band and core levels of O 2s, Mo 3d, Mo 3p, and Na 1p are studied upon synchrotron excitation in the photon energy range 80–600 eV. It is shown that in the formed oxide film, molybdenum is in two states: Mo6+ and Mo4+. On the surface of the oxide, oxygen is induced both in the composition of the oxides and in hydroxyl. It was shown that MoO3 is formed on the surface, and MoO2 at a distance from the surface. The deposition of Na atoms leads to intercalation of the molybdenum oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Liu, X. Liu, S. Wang, H.-K. Liu, and L. Li, Energy Storage Mater. 28, 122 (2020).

    Article  Google Scholar 

  2. J. Warner, Lithium-Ion Battery Chemistries (Elsevier, Amsterdam, 2019).

    Google Scholar 

  3. P. Zhang, S. Guo, J. Liu, C. Zhou, S. Li, Y. Yang, J. Wu, D. Yu, and L. Chen, J. Colloid Interface Sci. 563, 318 (2020).

    Article  ADS  Google Scholar 

  4. Y. Dong, X. Xu, S. Li, C. Han, K. Zhao, L. Zhang, C. Niu, Z. Huang, and L. Mai, Nano Energy 15, 145 (2015).

    Article  Google Scholar 

  5. S. Li, H. Hou, Z. Huang, H. Liao, X. Qiu, and X. Ji, Electrochim. Acta 245, 949 (2017).

    Article  Google Scholar 

  6. Z. Hu, X. Zhang, C. Peng, G. Lei, and Z. Li, J. Alloys Compd. 826, 154055 (2020).

    Article  Google Scholar 

  7. J. Światowska-Mrowiecka, S. de Diesbach, V. Maurice, S. Zanna, L. Klein, E. Briand, I. Vickridge, and P. Marcus, J. Phys. Chem. C 112, 11050 (2000).

    Article  Google Scholar 

  8. D. O. Scanlon, G. W. Watson, D. J. Payne, G. R. Atkinson, R. G. Egdell, and D. S. L. Law, J. Phys. Chem. C 114, 4636 (2010).

    Article  Google Scholar 

  9. W. Xia, F. Xu, C. Zhu, H. L. Xin, Q. Xu, P. Sun, and L. Sun, Nano Energy 27, 447 (2016).

    Article  Google Scholar 

  10. A. D. Sayede, T. Amriou, M. Pernisek, B. Khelifa, and C. Mathieu, Chem. Phys. 316, 72 (2005).

    Article  Google Scholar 

  11. R. Tokarz-Sobieraj, K. Hermann, M. Witko, G. Mestl, and R. Schlögl, Surf. Sci. 489, 107 (2001).

    Article  ADS  Google Scholar 

  12. Q. Qu, W. B. Zhang, K. Huang, and H. M. Chen, Comput. Mater. Sci. 130, 242 (2017).

    Article  Google Scholar 

  13. Y. Zh. Wang, M. Yang, D. C. Qi, S. Chen, W. Chen, A. T. S. Wee, and X. Y. Gao, J. Chem. Phys. 134, 034706 (2011).

    Article  ADS  Google Scholar 

  14. A. Borgschulte, O. Sambalova, R. Delmelle, S. Jenatsch, R. Hany, and F. Nüesch, Sci. Rep. 7, 40761 (2017).

    Article  ADS  Google Scholar 

  15. P. C. Kao, Z. H. Chen, H. E. Yen, T. H. Liu, and C. L. Huang, Jpn. J. Appl. Phys. 57, 03DA04 (2018).

    Article  Google Scholar 

  16. A. T. Martí-Luengo, H. Köstenbauer, J. Winkler, and A. Bonanni, AIP Adv. 7, 015034 (2017).

    Article  ADS  Google Scholar 

  17. H.-S. Kim, J. B. Cook, S. H. Tolbert, and B. Dunn, J. Electrochem. Soc. 162, A5083 (2015).

    Article  Google Scholar 

  18. J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts, and N. Fairley, Appl. Surf. Sci. 326, 151 (2015).

    Article  ADS  Google Scholar 

  19. O. Mohamed, J. Kappertz, T. Ngaruiya, L. Pedersen, R. Drese, and M. Wuttig, Thin Solid Films 429, 135 (2003).

    Article  ADS  Google Scholar 

  20. S. T. Nishanthi, A. Baruah, K. K. Yadav, D. Sarker, S. G. A. K. Ganguli, and M. Jha, Appl. Surf. Sci. 467–468, 1148 (2019).

    Article  ADS  Google Scholar 

  21. A. de Castro, R. S. Datta, J. Z. Ou, S. Sriram, T. Daeneke, and K. Kalantarzadeh, Adv. Mater. 29, 1701619 (2017).

    Article  Google Scholar 

  22. P. A. Spevack and N. S. McIntyre, J. Phys. Chem. 96, 9029 (1992).

    Article  Google Scholar 

  23. V. Madhavi, P. Kondaiah, S. S. Rayudu, O. M. Hussain, and S. Uthanna, Mater. Express 3, 135 (2013).

    Article  Google Scholar 

  24. N. S. McIntyre, D. D. Jobnston, L. L. Coatswortb, and R. D. Davidson, Surf. Interface Anal. 15, 265 (1990).

    Article  Google Scholar 

  25. R. Chalamala, R. H. Reuss, Y. Wei, J. M. Bernhard, E. D. Sosa, D. E. Golden, S. Aggarwal, and R. Ramesh, Mat. Res. Soc. Symp. Proc. E 685, D14.2.1 (2001).

  26. A. Galtyaries, S. Wisniewski, and J. Grimblot, J. Electron Spectrosc. Relat. Phenom. 87, 31 (1997).

    Article  Google Scholar 

  27. J. Badovinac, I. K. Piltaver, I. Sarlic, R. Peter, and M. Petravic, Mater. Technol. 51, 617 (2017).

    Google Scholar 

  28. P. Reddy, N. B. Mhamane, M. K. Ghosalya, and C. S. Gopinath, J. Phys. Chem. C 122, 23034 (2018).

    Article  Google Scholar 

  29. P. A. Dement’ev, E. V. Ivanova, M. N. Lapushkin, D. A. Smirnov, and S. N. Timoshnev, Phys. Solid State 61, 1993 (2019).

    Article  ADS  Google Scholar 

  30. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 21, 165 (1994).

    Article  Google Scholar 

  31. A. Siokou, G. Leftheriotis, S. Ppapaefthimiou, and P. Yianoulis, Surf. Sci. 482–485, 294 (2001).

    Article  ADS  Google Scholar 

  32. K. Inzani, M. Nematollahi, F. Vullum-Bruer, T. Grande, T. W. Reenaas, and S. M. Selbach, Phys. Chem. Chem. Phys. 19, 9232 (2017).

    Article  Google Scholar 

  33. M. Sing, R. Neudert, H. von Lips, M. S. Golden, M. Knupfer, J. Fink, R. Claessen, J. Muecke, H. Schmitt, S. Huefner, B. Lommel, W. Aßmus, Ch. Jung, and C. Hellwig, Phys. Rev. B 60, 8559 (1999).

    Article  ADS  Google Scholar 

  34. A. Katrib, J. W. Sobczak, M. Krawczyk, L. Zommer, A. Benadda, A. Jablonski, and G. Maire, Surf. Interface Anal. 34, 225 (2002).

    Article  Google Scholar 

  35. R. K. Sahoo, PhD Thesis (Lehigh Univ., Bethlehem, 2015).

Download references

ACKNOWLEDGMENT

This research project has been supported by the Russian German Laboratory at BESSY II.

We thank HZB for the allocation of synchrotron radiation beam time.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-02-00370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Lapushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dementev, P.A., Ivanova, E.V., Lapushkin, M.N. et al. Electronic Structure of an Ultrathin Molybdenum Oxide Film. Phys. Solid State 62, 1787–1795 (2020). https://doi.org/10.1134/S1063783420100030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100030

Keywords:

Navigation