Skip to main content
Log in

Electronic Structure of Molybdenum Oxidized in Air

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic structure of a clean molybdenum surface oxidized in air and upon sodium Na adsorption at submonolayer coating have been studied by photoelectron spectroscopy in situ in an ultrahigh vacuum. The photoemission spectra from the valence band and O 1s, O 2s, Mo 4s, and Na 2p core levels are studied at the synchrotron excitation in the photon energy range 80–600 eV. The spectrum of oxygen core levels related to the substitution of sodium atoms for hydrogen atoms in the hydroxyl group is found to be changed. The surface topography and the cathodoluminescence of the molybdenum oxide has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. Ya. Zandberg, Tech. Phys. 40, 865 (1995).

    Google Scholar 

  2. E. Ya. Zandberg, A. G. Kamenev, V. I. Paleev, and U. Kh. Rasulev, Zh. Anal. Khim. 35, 1188 (1980).

    Google Scholar 

  3. I. A. Burakov, E. V. Krylov, A. L. Makasei, E. G. Nazarov, V. V. Pervukhin, and U. Kh. Rasulev, Sov. Tech. Phys. Lett. 17, 446 (1991).

    Google Scholar 

  4. V. I. Kapustin and A. P. Korzhavyi, Ross. Tekhnol. 4, 3 (2016).

    Google Scholar 

  5. V. N. Ageev and Yu. A. Kuznetsov, Phys. Solid State 40, 707 (1998).

    Article  ADS  Google Scholar 

  6. I. A. de Castro, R. S. Datta, J. Z. Ou, S. Sriram, T. Daeneke, and K. Kalantar-zadeh, Adv. Mater. 29, 1701619 (2017).

    Article  Google Scholar 

  7. A. D. Sayede, T. Amriou, M. Pernisek, B. Khelifa, and C. Mathieu, Chem. Phys. 316, 72 (2005).

    Article  Google Scholar 

  8. D. O. Scanlon, G. W. Watson, D. J. Payne, G. R. Atkinson, R. G. Egdell, and D. S. L. Law, J. Phys. Chem. C 114, 4636 (2010).

    Article  Google Scholar 

  9. R. Tokarz-Sobieraj, K. Hermann, M. Witko, G. Mestl, and R. Schlögl, Surf. Sci. 489, 107 (2001).

    Article  ADS  Google Scholar 

  10. Q. Qu, W. B. Zhang, K. Huang, and H. M. Chen, Comput. Mater. Sci. 130, 242 (2017).

    Article  Google Scholar 

  11. Y. Zh. Wang, M. Yang, D. C. Qi, S. Chen, W. Chen, A. T. S. Wee, and X. Y. Gao, J. Chem. Phys. 134, 034706 (2011).

    Article  ADS  Google Scholar 

  12. A. Borgschulte, O. Sambalova, R. Delmelle, S. Jenatsch, R. Hany, and F. Nüesch, Sci. Rep. 7, 40761 (2017).

    Article  ADS  Google Scholar 

  13. P. C. Kao, Z. H. Chen, H. E. Yen, T. H. Liu, and C. L. Huang, Jpn. J. Appl. Phys. 57, 03DA04 (2018).

    Article  Google Scholar 

  14. A. T. Martín-Luengo, H. Köstenbauer, J. Winkler, and A. Bonanni, AIP Adv. 7, 015034 (2017).

    Article  ADS  Google Scholar 

  15. G. E. Buono-Core, A. H. Klahna, C. Castillo, E. Muñoz, C. Manzur, G. Cabellob, and B. Chornik, J. Non-Cryst. Solids 387, 21 (2014).

    Article  ADS  Google Scholar 

  16. J. Song, X. Ni, D. Zhang, and H. Zheng, Solid State Sci. 8, 1164 (2006).

    Article  ADS  Google Scholar 

  17. A. A. Bortotia, A. F. Gavanskia, Y. R. Velazquezb, A. Gallia, and E. G. de Castro, J. Solid State Chem. 252, 111 (2017).

    Article  ADS  Google Scholar 

  18. I. Irfan, H. Ding, Y. Gao, C. Small, D. Y. Kim, J. Subbiah, and F. So, Appl. Phys. Lett. 96, 243307 (2010).

    Article  ADS  Google Scholar 

  19. I. Irfan, A. J. Turinske, Z. Bao, and Y. Gao, Appl. Phys. Lett. 101, 093305 (2012).

    Article  ADS  Google Scholar 

  20. C. Wang and I. Irfan, J. Vac. Sci. Technol. B 32, 040801 (2014).

    Article  Google Scholar 

  21. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).

    Article  Google Scholar 

  22. I. Lindau and W. E. Spicer, J. Electron. Spectrosc. 3, 409 (1974).

    Article  Google Scholar 

  23. L. Zhang, B. Wen, Y. N. Zhu, Z. Chai, X. Chen, and M. Chen, Comput. Mater. Sci. 150, 484 (2018).

    Article  Google Scholar 

  24. Y. Z. Wang, M. Yang, D. C. QI, S. Chen, W. Chen, A. T. S. Wee, and X. Y. Gao, J. Chem. Phys. 134, 034706 (2011).

    Article  ADS  Google Scholar 

  25. T. C. Arnoldussen, J. Electrochem. Soc. 123, 527 (1976).

    Article  Google Scholar 

  26. N. Desai, S. Mali, V. Kondalka, R. Mane, C. Hong, and P. Bhosale, J. Nanomed. Nanotechnol. 6, 338 (2015).

    Article  Google Scholar 

  27. H. Akutsu, S. Yamaguchi, K. Otsubo, M. Tamaoki, A. Shimazaki, R. Yoshimura, F. Aiga, and T. Tada, Proc. SPIE 7028, 702829 (2008).

    Article  Google Scholar 

  28. A. T. Martín-Luengo, H. Köstenbauer, J. Winkler, and A. Bonanni, AIP Adv. 7, 015034 (2017).

    Article  ADS  Google Scholar 

  29. K. Koike, R. Wada, S. Yagi, Y. Harada, S. Sasa, and M. Yano, Jpn. J. Appl. Phys. 53, 05FJ02 (2014).

    Article  Google Scholar 

  30. I. Navas, R. Vinodkumar, and V. P. Mahadevan Pillai, Appl. Phys. A 103, 373 (2011).

    Article  ADS  Google Scholar 

  31. T. Toyoda, H. Nakanishi, S. Endo, and T. Irie, J. Phys. D 18, 747 (1985).

    Article  ADS  Google Scholar 

  32. H. Simchi, B. E. McCandless, T. Meng, J. H. Boyle, and W. N. Shafarman, J. Appl. Phys. 114, 013503 (2013).

    Article  ADS  Google Scholar 

  33. L. N. Bugerko, N. V. Borisova, V. E. Surovaya, and G. O. Eremeeva, Polzunov. Vestn. 1, 77 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Helmholtz-Zentrum Berlin for the possibility of using synchrotron radiation and to D.O. Kuleshov for the discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Lapushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dement’ev, P.A., Ivanova, E.V., Lapushkin, M.N. et al. Electronic Structure of Molybdenum Oxidized in Air. Phys. Solid State 61, 1993–1998 (2019). https://doi.org/10.1134/S1063783419110131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419110131

Keywords:

Navigation