Skip to main content
Log in

Influence of the Accumulation Layer on the Spectral Properties of Full-Shell Majorana Nanowires

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We study the influence of the accumulation layer on the spectral properties of semiconducting nanowires fully covered by a superconducting shell within the framework of the Bogoliubov–de Gennes equations. It is shown that both the decrease in the thickness of the layer and the increase in the ratio of the Fermi velocities in the shell and the core result in the enhancement of the spectral gap and restrict the parameter range corresponding to the topologically nontrivial phase. The presence of the accumulation layer can also lead to reentrant magnetic flux dependencies of the gap, which can be experimentally observed in measurements of charge transport through the nanowire in the Coulomb blockade conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Yu. Kitaev, Phys. Usp. 44, 131 (2001).

    Article  ADS  Google Scholar 

  2. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).

    Article  ADS  Google Scholar 

  3. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nat. Phys. 7, 412 (2011).

    Article  Google Scholar 

  4. D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Phys. Rev. X 6, 031016 (2016).

    Google Scholar 

  5. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

    Article  ADS  Google Scholar 

  6. S. R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137 (2015).

    Article  ADS  Google Scholar 

  7. R. Aguado, Riv. Nuovo Cim. Soc. Ital. Fis. 40, 523 (2017).

    ADS  Google Scholar 

  8. F. von Oppen, Y. Peng, and F. Pientka, Topological Superconducting Phases in one Dimension (Oxford Uni. Press, New York, 2017).

    Book  Google Scholar 

  9. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).

    Article  ADS  Google Scholar 

  10. Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

    Article  ADS  Google Scholar 

  11. W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P. Krogstrup, J. Nygard, and C. M. Marcus, Nat. Nanotechnol. 10, 232 (2015).

    Article  ADS  Google Scholar 

  12. A. P. Higginbotham, S. M. Albrecht, G. Kirsanskas, W. Chang, F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J. Nygard, K. Flensberg, and C. M. Marcus, Nat. Phys. 11, 1017 (2015).

    Article  Google Scholar 

  13. P. Krogstrup, N. L. B. Ziino, W. Chang, S. M. Albrecht, M. H. Madsen, E. Johnson, J. Nygard, C. M. Marcus, and T. S. Jespersen, Nat. Mater. 14, 400 (2015).

    Article  ADS  Google Scholar 

  14. S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygard, P. Krogstrup, and C. M. Marcus, Nature (London, U.K.) 531, 206 (2016).

    Article  ADS  Google Scholar 

  15. V. E. Degtyarev, S. V. Khazanova, and N. V. Demarina, Sci. Rep. 7, 3411 (2017).

    Article  ADS  Google Scholar 

  16. A. E. Antipov, A. Bargerbos, G. W. Winkler, B. Bauer, E. Rossi, and R. M. Lutchyn, Phys. Rev. X 8, 031041 (2018).

    Google Scholar 

  17. A. E. G. Mikkelsen, P. Kotetes, P. Krogstrup, and K. Flensberg, Phys. Rev. X 8, 031040 (2018).

    Google Scholar 

  18. B. D. Woods, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B 98, 035428 (2018).

    Article  ADS  Google Scholar 

  19. S. Schuwalow, N. B. M. Schroeter, J. Gukelberger, C. Thomas, V. Strocov, J. Gamble, A. Chikina, M. Caputo, J. Krieger, G. C. Gardner, M. Troyer, G. Aeppli, M. J. Manfra, and P. Krogstrup, arXiv: 1910.02735 (2019).

  20. R. M. Lutchyn, G. W. Winkler, B. van Heck, T. Karzig, K. Flensberg, L. I. Glazman, and C. Nayak, arXiv: 1809.05512 (2018).

  21. S. Vaitiekenas, M.-T. Deng, P. Krogstrup, and C. M. Marcus, arXiv: 1809.05513 (2018).

  22. A. A. Kopasov and A. S. Mel’nikov, Phys. Rev. B 101, 054515 (2020).

    Article  ADS  Google Scholar 

  23. N. Luo, G. Liao, and H. Q. Xu, AIP Adv. 6, 125109 (2016).

    Article  ADS  Google Scholar 

  24. S. M. M. Virtanen and M. M. Salomaa, Phys. Rev. B 60, 14581 (1999).

    Article  ADS  Google Scholar 

  25. K. Tanaka, I. Robel, and B. Janko, Proc. Natl. Acad. Sci. U. S. A. 99, 5233 (2002).

    Article  ADS  Google Scholar 

  26. L. F. Zhang, L. Covaci, M. V. Milosevic, G. R. Berdiyorov, and F. M. Peeters, Phys. Rev. Lett. 109, 107001 (2012).

    Article  ADS  Google Scholar 

  27. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  28. C. Caroli, P.-G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).

    Article  ADS  Google Scholar 

  29. J. Bardeen, R. Kummel, A. E. Jacobs, and L. Tewordt, Phys. Rev. 187, 556 (1969).

    Article  ADS  Google Scholar 

  30. N. B. Kopnin, A. S. Mel’nikov, V. I. Pozdnyakova, D. A. Ryzhov, I. A. Shereshevskii, and V. M. Vinokur, Phys. Rev. Lett. 95, 197002 (2005).

    Article  ADS  Google Scholar 

  31. N. B. Kopnin, A. S. Mel’nikov, V. I. Pozdnyakova, D. A. Ryzhov, I. A. Shereshevskii, and V. M. Vinokur, Phys. Rev. B 75, 024514 (2007).

    Article  ADS  Google Scholar 

  32. A. S. Mel’nikov, D. A. Ryzhov, and M. A. Silaev, Phys. Rev. B 79, 134521 (2009).

    Article  ADS  Google Scholar 

  33. A. S. Mel’nikov, A. V. Samokhvalov, and M. N. Zubarev, Phys. Rev. B 79, 134529 (2009).

    Article  ADS  Google Scholar 

  34. B. E. Hansen, Phys. Lett. A 27, 576 (1968).

    Article  ADS  Google Scholar 

  35. D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 69, 1993 (1992).

    Article  ADS  Google Scholar 

  36. M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research under Grants nos. 17-52-12044 and 18-02-00390, the Russian state contract no. 0035-2019-0021 (Section 3) and by the Russian Science Foundation under Grant no. 20-12-00053 (Section 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kopasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopasov, A.A., Mel’nikov, A.S. Influence of the Accumulation Layer on the Spectral Properties of Full-Shell Majorana Nanowires. Phys. Solid State 62, 1592–1597 (2020). https://doi.org/10.1134/S1063783420090164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090164

Keywords:

Navigation