Skip to main content
Log in

Aharonov–Bohm oscillations caused by non-topological surface states in Dirac nanowires

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

One intriguing fingerprint of surface states in topological insulators is the Aharonov–Bohm effect in magnetoconductivity of nanowires. We show that surface states in nanowires of Dirac materials (bismuth, bismuth antimony, and lead tin chalcogenides) being in non-topological phase, exhibit the same effect as amendment to magnetoconductivity of the bulk states. We consider a simple model of a cylindrical nanowire, which is described by the 3D Dirac equation with a general T-invariant boundary condition. The boundary condition is determined by a single phenomenological parameter whose sign defines topological-like and non-topological surface states. The non-topological surface states emerge outside the gap. In a longitudinal magnetic field B, they lead to Aharonov–Bohm amendment for the density of states and correspondingly for the conductivity of the nanowire. The phase of these magnetic oscillations increases with B from π to 2π.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Volkov and V. V. Enaldiev, J. Exp. Theor. Phys. 122, 608 (2016).

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  3. X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  4. T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat. Commun. 3, 982 (2012).

    Article  ADS  Google Scholar 

  5. S. Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J. D. Denlinger, Y. J. Wang, H. Lin, L. A. Wray, G. Landolt, B. Slomski, J. H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F. C. Chou, R. J. Cava, A. Bansil, and M. Z. Hasan, Nat. Commun. 3, 1192 (2012).

    Article  ADS  Google Scholar 

  6. P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakov, M. Szot, E. Lusakowska, T. Balasubramanian, B. M. Wojek, M. H. Berntsen, O. Tjernberg, and T. Story, Nat. Mater. 11, 1023 (2012).

    ADS  Google Scholar 

  7. B. M. Wojek, R. Buczko, S. Safaei, P. Dziawa, B. J. Kowalski, M. H. Berntsen, T. Balasubramanian, M. Leandersson, A. Szczerbakow, P. Kacman, T. Story, and O. Tjernberg, Phys. Rev. B 87, 115106 (2013).

    Article  ADS  Google Scholar 

  8. J. O. Dimmock, I. Melngailis, and A. J. Strauss, Phys. Rev. Lett. 16, 1193 (1966).

    Article  ADS  Google Scholar 

  9. P. A. Wolff, J. Phys. Chem. Solids 25, 1057 (1964).

    Article  ADS  Google Scholar 

  10. R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).

    ADS  Google Scholar 

  12. F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. B 86, 081303(R) (2012).

  13. J. Liu, W. Duan, and L. Fu, Phys. Rev. B 88, 241303(R) (2013).

  14. V. A. Volkov and T. N. Pinsker, Sov. Phys. Solid State 23, 1022 (1981).

    Google Scholar 

  15. B. A. Volkov, B. G. Idlis, and M. Sh. Usmanov, Phys. Usp. 38, 761 (1995).

    Article  ADS  Google Scholar 

  16. I. Zeljkovic, Y. Okada, M. Serbyn, R. Sankar, D. Walkup, W. Zhou, J. Liu, G. Chang, Y. J. Wang, M. Z. Hasan, F. Chou, H. Lin, A. Bansil, L. Fu, and V. Madhavan, Nat. Mater. 14, 318 (2015).

    Article  ADS  Google Scholar 

  17. S. G. Egorova, V. I. Chernichkin, L. I. Ryabova, E. P. Skipetrov, L. V. Yashina, S. N. Danilov, S. D. Ganichev, and D. R. Khokhlov, Sci. Rep. 5, 11540 (2015).

    Article  ADS  Google Scholar 

  18. Yu. I. Latyshev, A. P. Orlov, V. A. Volkov, V. V. Enaldiev, I. V. Zagorodnev, O. F. Vyvenko, Yu. V. Petrov, and P. Monceau, Sci. Rep. 4, 7578 (2014).

    Article  ADS  Google Scholar 

  19. A. Nikolaeva, D. Gitsu, L. Konopko, M. J. Graf, and T. E. Huber, Phys. Rev. B 77, 075332 (2008).

    Article  ADS  Google Scholar 

  20. T. E. Huber, A. Adeyeye, A. Nikolaeva, L. Konopko, R. C. Johnson, and M. J. Graf, Phys. Rev. B 83, 235414 (2011).

    Article  ADS  Google Scholar 

  21. M. Safdar, Q. Wang, M. Mirza, Z. Wang, K. Xu, and J. He, Nano Lett. 13, 5344 (2013).

    Article  ADS  Google Scholar 

  22. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Nation. Bureau of Standards, New York, 1964).

    MATH  Google Scholar 

  23. J. H. Bardarson and J. E. Moore, Rep. Prog. Phys. 76, 056501 (2013).

    Article  ADS  Google Scholar 

  24. I. J. R. Aitchison, Supersymmetry in Particle Physics. An Elementary Introduction (Cambridge Univ. Press, Cambridge, 2007).

    Book  MATH  Google Scholar 

  25. Y. Zhang, Y. Ran, and A. Vishwanath, Phys. Rev. B 79, 245331 (2009).

    Article  ADS  Google Scholar 

  26. P. A. Ioselevich and M. V. Feigel’man, Phys. Rev. Lett. 106, 077003 (2011).

    Article  ADS  Google Scholar 

  27. A. S. Ioselevich, JETP Lett. 101, 358 (2015).

    Article  ADS  Google Scholar 

  28. V. B. Sandomirskii, Sov. Phys. JETP 25, 101 (1967).

    ADS  Google Scholar 

  29. N. H. Hong and T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998).

    Article  ADS  Google Scholar 

  30. P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett. 105, 036803 (2010).

    Article  ADS  Google Scholar 

  31. Y. Ohtsubo, L. Perfetti, M. O. Goerbig, P. le Fèvre, F. Bertran, and A. Taleb-Ibrahimi, New J. Phys. 15, 033041 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Enaldiev.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 11, pp. 806–813.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enaldiev, V.V., Volkov, V.A. Aharonov–Bohm oscillations caused by non-topological surface states in Dirac nanowires. Jetp Lett. 104, 784–790 (2016). https://doi.org/10.1134/S0021364016230016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016230016

Navigation