Skip to main content
Log in

Laser Nanofluidics of Liquid Crystals

  • POLYMERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Several scenarios of formation of hydrodynamic flows in nanoscale planar-oriented liquid-crystal (POLC) channels are described by numerical methods within nonlinear generalization of the classical Ericksen–Leslie theory, which allows for consideration of thermomechanical contributions both to the expression for shear stress and the equation of entropy balance. A vortex flow can eventually be formed in a nanoscale POLC channel as a result of the formation of both temperature gradient ∇T (in the initially uniformly heated POLC channel under focused laser irradiation) and director field gradient \(\nabla {\mathbf{\hat {n}}}\) (under a static electric field arising in the natural way at the LC phase/solid interface) and due to the interaction between ∇T and \(\nabla {\mathbf{\hat {n}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. J. Woltman, G. D. Jay, and G. P. Crawford, Nat. Mater. 6, 929 (2007).

    Article  ADS  Google Scholar 

  2. J. G. Cuennet, A. E. Vasdekis, L. de Sio, and D. Plaltis, Nat. Photon. 5, 234 (2011).

    Article  ADS  Google Scholar 

  3. A. P. H. J. Schenning, G. P. Crawford, and D. J. Broer, Liquid Crystal Sensors (CRC, Taylor and Francis Group, Boca Raton, 2018).

    Google Scholar 

  4. T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).

    Article  ADS  Google Scholar 

  5. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Univ. Press, Oxford, 1995).

    Book  Google Scholar 

  6. A. V. Zakharov and A. A. Vakulenko, J. Chem. Phys. 127, 084907 (2007).

    Article  ADS  Google Scholar 

  7. J. N. Israellachvili, Intermolecular and Surface Forces (Academic, London, 1992).

    Google Scholar 

  8. J. L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960).

    Article  Google Scholar 

  9. F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).

    Article  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

  11. I. S. Berezin and N. R. Zhidkov, Calculation Methods (Fizmatgiz, Moscow, 1964) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science (grants no. 3.11888.2018/11.12 and 3.9585.2017/8.9) as well as the Russian Foundation for Basic Research and the German Research Foundation within research project no. 20-52-12040.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Śliwa or A. V. Zakharov.

Additional information

Translated by A. Sin’kov

APPENDIX

APPENDIX

The balance equation of torque per unit volume of the LC phase has the form

$${{{\mathbf{T}}}_{{{\text{el}}}}} + {{{\mathbf{T}}}_{{{\text{elast}}}}} + {{{\mathbf{T}}}_{{{\text{vis}}}}} + {{{\mathbf{T}}}_{{{\text{tm}}}}} = 0,$$

where Tel = \( - {{\epsilon }_{0}}{{\epsilon }_{a}}{\mathbf{E}}\) × \({\mathbf{\hat {n}}}({\mathbf{E}}\) · \({\mathbf{\hat {n}}})\), Telast = \(\frac{{\delta {{\mathcal{W}}_{{{\text{elast}}}}}}}{{\delta {\mathbf{\hat {n}}}}}\) × \({\mathbf{\hat {n}}}\), Tvis = \(\frac{{\delta {{\mathcal{R}}^{{{\text{wis}}}}}}}{{\delta {{{{\mathbf{\hat {n}}}}}_{{,t}}}}}\) × \({\mathbf{\hat {n}}}\), and Ttm = \(\frac{{\delta {{\mathcal{R}}^{{{\text{tm}}}}}}}{{\delta {{{{\mathbf{\hat {n}}}}}_{t}}}}\) × \({\mathbf{\hat {n}}}\) are, respectively, the electric, elastic, viscous, and thermomechanical contributions to the torque balance. Here, \({{{\mathbf{\hat {n}}}}_{{,t}}}\) ≡ \(\frac{{d{\mathbf{\hat {n}}}}}{{dt}}\) is the material derivative of the vector \({\mathbf{\hat {n}}}\) = \({{n}_{x}}{\mathbf{\hat {i}}}\) + \({{n}_{z}}{\mathbf{\hat {k}}}\).

The balance equation of linear momenta per unit volume of the LC phase can be written as

$$\rho \frac{{d{\mathbf{v}}}}{{dt}} = \nabla \cdot \sigma ,$$

where \(\frac{{d{\mathbf{v}}}}{{dt}}\) = \(\frac{{\partial {v}}}{{\partial t}}\) + \(u{{{v}}_{{,x}}}\) + \(w{{{v}}_{{,z}}}\), σ = σel + σvis + σtm\(\mathcal{P}\mathcal{E}\) is the complete expression for the ST consisting of the elastic \(\left( {{{\sigma }^{{{\text{e}}{{{\text{l}}}^{{^{{^{{}}}}}}}}}}} \right.\) = \( - \frac{{\partial {{\mathcal{W}}_{{{\text{el}}}}}}}{{\partial \nabla {\mathbf{\hat {n}}}}}\) · \(\left. {^{{^{{^{{^{{}}}}}}}}{{{(\nabla {\mathbf{\hat {n}}})}}^{{\rm T}}}} \right)\), viscous \(\left( {{{\sigma }^{{{\text{vi}}{{{\text{s}}}^{{^{{^{{}}}}}}}}}}} \right.\) = \(\left. {\frac{{\delta {{\mathcal{R}}^{{{\text{wis}}}}}}}{{\delta \nabla {\mathbf{v}}}}} \right)\), and thermomechanical \(\left( {{{\sigma }^{{{\text{t}}{{{\text{m}}}^{{^{{^{{}}}}}}}}}}} \right.\) = \(\left. {\frac{{\delta {{\mathcal{R}}^{{{\text{tm}}}}}}}{{\delta \nabla {\mathbf{v}}}}} \right)\) contributions to the ST. Here, \(\mathcal{R}\) = \({{\mathcal{R}}^{{{\text{vis}}}}}\) + \({{\mathcal{R}}^{{{\text{tm}}}}}\) + \({{\mathcal{R}}^{{{\text{th}}}}}\) is the total Rayleigh dissipation function; \({{\mathcal{W}}_{{{\text{el}}}}}\) = \(\frac{1}{2}[{{K}_{1}}(\nabla \) · \({\mathbf{\hat {n}}}{{)}^{2}}\) + \({{K}_{3}}({\mathbf{\hat {n}}}\) × ∇ × \({\mathbf{\hat {n}}}{{)}^{2}}]\) is the elastic energy density; K1 and K3 are, respectively, the longitudinal and transverse elasticity coefficients; \(\mathcal{P}\) is the hydrostatic pressure in the LC system; \(\mathcal{E}\) is the unit tensor; and \({{\mathcal{R}}^{{{\text{vis}}}}}\) = \({{\alpha }_{1}}({\mathbf{\hat {n}}}\) · Ds · \({\mathbf{\hat {n}}}{{)}^{2}}\) + \({{\gamma }_{1}}({{{\mathbf{\hat {n}}}}_{t}}\)Da · \({\mathbf{\hat {n}}}{{)}^{2}}\) + \(2{{\gamma }_{2}}({{{\mathbf{\hat {n}}}}_{t}}\)Da · \({\mathbf{\hat {n}}}\))(Ds · \({\mathbf{\hat {n}}}\) – (\({\mathbf{\hat {n}}}\) · Ds · \({\mathbf{\hat {n}}}\))\({\mathbf{\hat {n}}}\)) + α4Ds: Ds + (α5 + α6)(\({\mathbf{\hat {n}}}\) · Ds · Ds · \({\mathbf{\hat {n}}}\)), \(\frac{1}{\xi }{{\mathcal{R}}^{{{\text{tm}}}}}\) = (\({\mathbf{\hat {n}}}\) · ∇T)Ds: M + ∇T · Ds · M · \({\mathbf{\hat {n}}}\) + (\({\mathbf{\hat {n}}}\) · ∇T)(\({{{\mathbf{\hat {n}}}}_{t}}\)Da · \({\mathbf{\hat {n}}}\) – 3Ds · \({\mathbf{\hat {n}}}\) + 3(\({\mathbf{\hat {n}}}\) · Ds · \({\mathbf{\hat {n}}}\))\({\mathbf{\hat {n}}}\)) · M · \({\mathbf{\hat {n}}}\) + \({\mathbf{\hat {n}}}\)(∇v)T · M · ∇T + \(\frac{1}{2}({\mathbf{\hat {n}}}\) · Ds · \({\mathbf{\hat {n}}}\))∇T · M · \({\mathbf{\hat {n}}}\) + \({{{\mathbf{\hat {n}}}}_{t}}\) · M · ∇T + \(\frac{1}{2}{{\mathcal{M}}_{0}}\nabla T\) · ∇v · \({\mathbf{\hat {n}}}\) + (\({\mathbf{\hat {n}}}\) · ∇T) \({{\mathcal{M}}_{0}}({\mathbf{\hat {n}}}\) · Ds · \({\mathbf{\hat {n}}}\)) + \(\frac{1}{2}{{\mathcal{M}}_{0}}{{{\mathbf{\hat {n}}}}_{t}}\) · ∇T, and \({{\mathcal{R}}^{{{\text{th}}}}}\) = \(\frac{1}{T}\)(\({{\lambda }_{{||}}}({\mathbf{\hat {n}}}\) · ∇T))2 + \({{\lambda }_{ \bot }}(\nabla T\)\({\mathbf{\hat {n}}}({\mathbf{\hat {n}}}\) · ∇T)2) are, respectively, the viscous, thermomechanical, and thermal contributions to the complete expression for the Rayleigh function \(\mathcal{R}\). Here, α1–α6 are the Leslie viscosity coefficients; γ1(T) and γ2(T) are the rotational viscosity coefficients of the LC system; ξ is the thermomechanical constant; λ|| and λ are the thermal conductivities of the LC system along and across the direction of the director \({\mathbf{\hat {n}}}\), respectively. Tensors Ds = \(\frac{1}{2}[\nabla {\mathbf{v}}\) + \({{(\nabla {\mathbf{v}})}^{{\text{T}}}}]\) and Da = \(\frac{1}{2}[\nabla {\mathbf{v}}\)\({{(\nabla {\mathbf{v}})}^{{\text{T}}}}]\) are, respectively, the symmetric and asymmetric contributions to the strain rate tensor, M = \(\frac{1}{2}[\nabla {\mathbf{\hat {n}}}\) + \({{(\nabla {\mathbf{\hat {n}}})}^{{\text{T}}}}]\), and \({{\mathcal{M}}_{0}}\) = ∇ · \({\mathbf{\hat {n}}}\) is the scalar invariant of tensor M.

The heat-conduction equation describing a change in the temperature field T(x, z, t) under the action of the heat flux q through the upper POLC-channel boundary has the form

$$\rho {{C}_{P}}\frac{{dT}}{{dt}} = - \nabla \cdot {\mathbf{Q}},$$

where Q = \( - T\frac{{\delta \mathcal{R}}}{{\delta \nabla T}}\) is the heat flux in the LC system and CP is the specific heat coefficient.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Śliwa, I., Zakharov, A.V. Laser Nanofluidics of Liquid Crystals. Phys. Solid State 62, 1095–1103 (2020). https://doi.org/10.1134/S1063783420060293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420060293

Keywords:

Navigation