Skip to main content
Log in

Formation of Vortex Flows in Liquid Crystal Phases Encapsulated in Microliter Volumes under the Action of Focused Laser Radiation

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical description of the process of formation of vortex flows v(t, r) and the evolution of the director field \(\hat n\) in microliter liquid crystal (LC) volumes with a free surface under the influence of a temperature gradient ∇T(t, r), which is initiated by focused laser radiation, has been proposed. Thermomechanical contributions to both the stress tensor and viscous moment which are acting per unit volume of the LC phase were taken into account in the framework of the nonlinear generalization of the classical Ericksen−Leslie theory, which allowed describing the origin and formation of vortex flows in nematics formed by 4-n-pentyl- 4'-cyanobiphenyl molecules. Various hydrodynamic modes of vortex formation in microsized LC volumes under the action of focused laser radiation have been investigated by numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Sparreboom, A. van den Berg, and J. C. T. Eijkel, New J. Phys. 12, 0115004 (2010).

    Article  Google Scholar 

  2. T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).

    Article  ADS  Google Scholar 

  3. E. Verneuil, M. L. Cordero, F. Gallaire, and Ch. N. Baroud, Langmuir 25, 5127 (2009).

    Article  Google Scholar 

  4. A. V. Zakharov and A. A. Vakulenko, J. Chem. Phys. 127, 084907 (2007).

    Article  ADS  Google Scholar 

  5. A. V. Zakharov, A. A. Vakulenko, and M. Iwamoto, J. Chem. Phys. 132, 224906 (2010).

    Article  ADS  Google Scholar 

  6. S. J. Woltman, G. D. Jay, and G. P. Crawford, Nat. Mater. 6, 929 (2007).

    Article  ADS  Google Scholar 

  7. S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson, Proc. Natl. Acad. Sci. 111, 1265 (2011).

    Article  ADS  Google Scholar 

  8. H. Choi and H. Takezoe, Soft Matter. 12, 481 (2016).

    Article  ADS  Google Scholar 

  9. A. V. Zakharov and A. A. Vakulenko, Phys. Fluids 27, 062001 (2015).

    Article  ADS  Google Scholar 

  10. R. S. Akopyan and B. Ya. Zel’dovich, Sov. Phys. JETP 60, 953 (1984).

    Google Scholar 

  11. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  12. J. L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960).

    Article  Google Scholar 

  13. F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).

    Article  Google Scholar 

  14. S. R. de Groot and P. Mazur, Non-Equilibrum Thermodynamics (North-Holland, Amsterdam, 1962; Mir, Moscow, 1964).

    Google Scholar 

  15. N. V. Madhusudana and R. B. Ratibha, Mol. Cryst. Liq. Cryst. 132, 339 (1986).

    Article  Google Scholar 

  16. A. G. Chmielewski, Mol. Cryst. Liq. Cryst. 132, 339 (1986).

    Article  Google Scholar 

  17. M. Marinelli, A. K. Ghosh, and F. Mercury, Phys. Rev. E 63, 061713 (2001).

    Article  ADS  Google Scholar 

  18. P. Jamee, G. Pitsi, and J. Thoen, Phys. Rev. E 66, 021707 (2002).

    Article  ADS  Google Scholar 

  19. A. V. Zakharov and A. A. Vakulenko, Phys. Rev. E 86, 031701 (2012).

    Article  ADS  Google Scholar 

  20. I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystal (World Scientific, Singapore, 1993), p. 59.

    Book  Google Scholar 

  21. R. S. Akopyan, R. B. Alaverdian, E. A. Santrosian, and Y. S. Chilingarian, J. Appl. Phys. 90, 3371 (2001).

    Article  ADS  Google Scholar 

  22. I. S. Berezin and N. R. Zhidkov, Computing Methods (Fizmatgiz, Moscow, 1964; Pergamon, Oxford, 1965).

    MATH  Google Scholar 

  23. A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zakharov.

Additional information

Original Russian Text © A.V. Zakharov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 7, pp. 1431–1440.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, A.V. Formation of Vortex Flows in Liquid Crystal Phases Encapsulated in Microliter Volumes under the Action of Focused Laser Radiation. Phys. Solid State 60, 1447–1457 (2018). https://doi.org/10.1134/S1063783418070326

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418070326

Navigation