Skip to main content
Log in

Computer Modeling of Phase Transformations and Critical Properties of the Frustrated Heisenberg Model for a Cubic Lattice

  • LATTICE DYNAMICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The investigation of the phase transformations and critical properties of the Heisenberg antiferromagnetic model on a cubic lattice was performed by the Monte Carlo method with account for interaction of nearest and next-nearest neighbors. The next-nearest neighbors exchange couplings are considered ranged in 0.0 ≤ r ≤ 1.0. The phase diagram of dependence of the critical temperature on the next-nearest neighbors exchange coupling is plotted. It is shown that a phase transformation of the second kind is observed in the considered range of exchange values r. Using the theory of finite-dimensional scaling, the values of all main static critical indices are computed. It is demonstrated that the class of universality of the critical behavior of this model preserves in the range 0.0 ≥ r ≥ 0.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Vik. S. Dotsenko, Phys. Usp. 38, 457 (1995).

  2. S. E. Korshunov, Phys. Usp. 49, 225 (2006).

    Article  ADS  Google Scholar 

  3. S. V. Maleev, Phys. Usp. 45, 569 (2002).

    Article  ADS  Google Scholar 

  4. M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Solid State Commun. 233, 35 (2016).

    Article  ADS  Google Scholar 

  5. D. P. Landau and K. Binder, Monte Carlo Simulations in Statistical Physics (Cambridge Univ. Press, Cambridge, 2000), p. 384.

    MATH  Google Scholar 

  6. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Low Temp. Phys. 37, 1001 (2011).

    Article  Google Scholar 

  7. A. Kalz and A. Honecker, Phys. Rev. B 86, 134410 (2012).

    Article  ADS  Google Scholar 

  8. S. Jin, A. Sen, and A. W. Sandvik, Phys. Rev. Lett. 108, 045702 (2012).

    Article  ADS  Google Scholar 

  9. S. Jin, A. Sen, W. Guo, and A. W. Sandvik, Phys. Rev. B 87, 144406 (2013).

    Article  ADS  Google Scholar 

  10. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 101, 714 (2015).

    Article  ADS  Google Scholar 

  11. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 103, 460 (2016).

    Article  ADS  Google Scholar 

  12. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, Mater. Lett. 236, 669 (2019).

    Article  Google Scholar 

  13. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. A (Amsterdam, Neth.) 507, 210 (2018).

  14. M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Phys. A (Amsterdam, Neth.) 521, 543 (2019).

  15. A. K. Murtazaev, M. K. Ramazanov, M. K. Mazagaeva, and M. A. Magomedov, J. Exp. Theor. Phys. 129, 421 (2019).

    Article  ADS  Google Scholar 

  16. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, and M. K. Badiev, Phys. Solid State 60, 1173 (2018).

    Article  ADS  Google Scholar 

  17. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, M. K. Badiev, and M. K. Mazagaeva, Phys. Solid State 61, 1107 (2019).

    Article  ADS  Google Scholar 

  18. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. Solid State 61, 1854 (2019).

    Article  ADS  Google Scholar 

  19. A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers (Peptide Sci.) 60, 96 (2001).

  20. K. Binder and J.-Sh. Wang, J. Stat. Phys. 55, 87 (1989).

    Article  ADS  Google Scholar 

  21. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 1988), p. 214.

    Book  Google Scholar 

  22. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 109, 589 (2019).

    Article  ADS  Google Scholar 

  23. A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 (1969).

    Article  ADS  Google Scholar 

  24. M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972).

    Article  ADS  Google Scholar 

  25. P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 43, 6087 (1991).

    Article  ADS  Google Scholar 

  26. A. K. Murtazaev and M. K. Ramazanov, Phys. Solid State 59, 1822 (2017).

    Article  ADS  Google Scholar 

  27. M. Campostrini, M. Hasenbusch, and A. Pelissetto, Phys. Rev. B 65, 144520 (2002).

    Article  ADS  Google Scholar 

Download references

Funding

The work is supported by the Russian Foundation for Basic Research (projects nos. 19-02-00153-a and 18-32-20098-mol-a-ved).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ramazanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramazanov, M.K., Murtazaev, A.K. Computer Modeling of Phase Transformations and Critical Properties of the Frustrated Heisenberg Model for a Cubic Lattice. Phys. Solid State 62, 976–981 (2020). https://doi.org/10.1134/S1063783420060244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420060244

Keywords:

Navigation