Skip to main content
Log in

Phase Transitions and Critical Properties of the Heisenberg Antiferromagnetic Model on a Body-Centered Cubic Lattice with Second Nearest Neighbor Interaction

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Phase transitions and critical properties of the antiferromagnetic Heisenberg model on a body-centered cubic lattice are investigated by the Monte Carlo method, based on the replica algorithm with allowance of the interactions between the first and second nearest neighbors. Analysis is performed for intensity ratios r of exchange interaction between the first and second nearest neighbors in the interval 0.0 ≤ r ≤ 1.0. The phase diagram of the dependence of the critical temperature on the intensity of interaction of the second nearest neighbors is constructed. On this diagram, a region in which the transition from the antiferromagnetic to the paramagnetic phase is of the first order is detected. The entire set of the main static critical indices is calculated. It is shown that the universality class of the critical behavior is preserved in the interval 0.0 ≤ r ≤ 0.6. It is found that the variation of the second nearest neighbor interaction intensity in the range 0.8 ≤ r ≤ 1.0 leads to nonuniversal critical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Introduction to Frustrated Magnetism: Materials, Experiments, Theory, Vol. 164 of Series in Solid-State Science, Ed. by C. Lacroix, P. Mendels, and F. Mila (Springer, Berlin, 2011).

    Google Scholar 

  2. S. Sachdev, Quantum Phase Transitions, 1st ed. (Cambridge Univ. Press, Cambridge, 2001).

  3. H. T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2004).

    MATH  Google Scholar 

  4. D. P. Landau and K. Binder, Monte Carlo Simulations in Statistical Physics (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  5. F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Magn. Magn. Mater. 324, 3418 (2012).

    Article  ADS  Google Scholar 

  6. E. Dagotto and A. Moreo, Phys. Rev. Lett. 63, 2148 (1989).

    Article  ADS  Google Scholar 

  7. E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

    Article  ADS  Google Scholar 

  8. H. Rosner, R. R. P. Singh, W. H. Zheng, J. Oitmaa, and W. E. Pickett, Phys. Rev. B 67, 014416 (2003).

    Article  ADS  Google Scholar 

  9. J. Sirker, Zh. Weihong, O. P. Sushkov, and J. Oitmaa, Phys. Rev. B 73, 184420 (2006).

    Article  ADS  Google Scholar 

  10. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  11. H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Zhu, Europhys. Lett. 82, 17009 (2008).

    Article  ADS  Google Scholar 

  12. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  13. R. Schmidt, J. Schulenburg, J. Richter, and D. D. Betts, Phys. Rev. B 66, 224406 (2002).

    Article  ADS  Google Scholar 

  14. J. Oitmaa and W. Zheng, Phys. Rev. B 69, 064416 (2004).

    Article  ADS  Google Scholar 

  15. K. Majumdar and T. Datta, J. Phys.: Condens. Matter 21, 406004 (2009).

    Google Scholar 

  16. M. R. Pantic, D. V. Kapor, S. M. Radosevic, and P. M. Mali, Solid State Commun. 182, 55 (2014).

    Article  ADS  Google Scholar 

  17. J. Richter, P. Müller, A. Lohmann, and H.-J. Schmidt, Phys. Proc. 75, 813 (2015).

    Article  ADS  Google Scholar 

  18. P. Müller, J. Richter, A. Hauser, and D. Ihle, Eur. Phys. J. B 88, 159 (2015).

    Article  ADS  Google Scholar 

  19. D. J. J. Farnell, O. Götze, and J. Richter, Phys. Rev. B 93, 235123 (2016).

    Article  ADS  Google Scholar 

  20. Bin-Zhou Mi, Solid State Commun. 239, 20 (2016).

    Article  ADS  Google Scholar 

  21. Bin-Zhou Mi, Solid State Commun. 251, 79 (2017).

    Article  ADS  Google Scholar 

  22. J. S. Smart, Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966).

    Book  Google Scholar 

  23. J. R. Banavar, D. Jasnow, and D. P. Landau, Phys. Rev. B 20, 3820 (1979).

    Article  ADS  Google Scholar 

  24. H. Kawamura, J. Phys. Soc. Jpn. 61, 1299 (1992).

    Article  ADS  Google Scholar 

  25. A. Mailhot, M. L. Plumer, and A. Caille, Phys. Rev. B 50, 6854 (1994).

    Article  ADS  Google Scholar 

  26. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 103, 460 (2016).

    Article  ADS  Google Scholar 

  27. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 106, 86 (2017).

    Article  ADS  Google Scholar 

  28. A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers (Peptide Sci.) 60, 96 (2001).

  29. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. A (Amsterdam, Neth.) 507, 210 (2018).

  30. K. Binder and J.-Sh. Wang, J. Stat. Phys. 55, 87 (1989).

    Article  ADS  Google Scholar 

  31. P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 43, 6087 (1991).

    Article  ADS  Google Scholar 

  32. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 1988).

    Book  Google Scholar 

  33. F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).

    Article  ADS  Google Scholar 

  34. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  ADS  Google Scholar 

  35. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, and M. K. Badiev, Phys. Solid State 60, 1173 (2018).

    Article  ADS  Google Scholar 

  36. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. K. Badiev, and Ya. K. Abuev, Phys. Solid State 59, 1103 (2017).

    Article  ADS  Google Scholar 

  37. A. K. Murtazaev, M. K. Ramazanov, F. A. Kassan-Ogly, and D. R. Kurbanova, J. Exp. Theor. Phys. 120, 110 (2015).

    Article  ADS  Google Scholar 

  38. A. K. Murtazaev, M. A. Magomedov, and M. K. Ramazanov, JETP Lett. 107, 259 (2018).

    Article  ADS  Google Scholar 

  39. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, Mater. Lett. 236, 669 (2019).

    Article  Google Scholar 

  40. A. Mailhot, M. L. Plumer, and A. Caille, Phys. Rev. B 50, 6854 (1994).

    Article  ADS  Google Scholar 

  41. P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 43, 6087 (1991).

    Article  ADS  Google Scholar 

  42. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. B (Amsterdam, Neth.) 476, 1 (2015).

  43. Ch. Holm and W. Janke, Phys. Rev. B 48, 936 (1993).

    Article  ADS  Google Scholar 

  44. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 65, 144520 (2002).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 18-32-00391 mol-a, 19-02-00153 a, and 18-32-20098 mol-a-ved).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Kurbanova.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtazaev, A.K., Kurbanova, D.R. & Ramazanov, M.K. Phase Transitions and Critical Properties of the Heisenberg Antiferromagnetic Model on a Body-Centered Cubic Lattice with Second Nearest Neighbor Interaction. J. Exp. Theor. Phys. 129, 903–910 (2019). https://doi.org/10.1134/S1063776119090103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119090103

Navigation