Skip to main content
Log in

Magnetostrictive Anomalies of Rare Earth Laves Phases with Morphotropic Phase Transition

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In the recent years, a number of pseudo-binary RT2 Laves phases with morphotropic phase transitions, i.e., systems of compounds having a morphotropic phase boundary in the phase diagram, have attracted special attention in the process of searching for compounds with high or, on the contrary, almost zero magnetostriction values. In this work, we study the magnetic and magnetostrictive properties of multicomponent systems based on compounds Tb0.2Dy0.8 – xGdxCo2 and Tb0.2Dy0.8 – xGdxCo1.9Al0.1, in which a morphotropic phase transition is observed when dysprosium is replaced by gadolinium. A relationship between the temperature behavior, the sign and magnitude of magnetostrictive deformations, and the type of cubic lattice distortion of the studied Laves phases is revealed. In the region of magnetic phase transitions, the magnetocaloric effect is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. H. J. Buschow, Rep. Prog. Phys. 40, 1179 (1977).

    Article  ADS  Google Scholar 

  2. A. E. Clark, Ferromagnetic Materials (North-Holland, Amsterdam, 1980).

    Google Scholar 

  3. K. P. Belov, Magnetostrictive Phenomena and their Technical Applications (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  4. S. A. Nikitin, Magnetic Properties of Rare Earth Metals and their Alloys (Moscow, 1989) [in Russian].

    Google Scholar 

  5. A. V. Andreev, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 1995), Vol. 8, p. 2.

    Google Scholar 

  6. U. Atzmony, M. P. Dariel, and G. Dublon, Phys. Rev. B 15, 3565 (1977).

    Article  ADS  Google Scholar 

  7. M. D. Kuz’min and A. M. Tishin, in Handbook of Magnetic Materials (Elsevier, Amsterdam, 2007), Vol. 17, p. 149.

    Google Scholar 

  8. A. del Moral, Handbook of Magnetostriction and Magnetostrictive Materials (Zaragoza, Spain, 2008).

    Google Scholar 

  9. N. Duc, D. K. Anh, and P. Brommer, Phys. B: Condens. Matter 319, 1 (2002).

    Article  ADS  Google Scholar 

  10. V. B. Chzhan, I. S. Tereshina, A. Yu. Karpenkov, and E. A. Tereshina-Chitrova, Acta Mater. 154, 303 (2018).

    Article  Google Scholar 

  11. N. J. Wang, Y. Liu, H. W. Zhang, X. Chen, and Y. X. Li, China Foundry 13, 75 (2016).

    Article  Google Scholar 

  12. A. G. Olabi and A. Grunwald, Mater. Des. 29, 469 (2008).

    Article  Google Scholar 

  13. G. Lanza, G. Breglio, M. Giordano, A. Gaddi, S. Buontempo, and A. Cusano, Sens. Actuators, A 172, 420 (2011).

    Article  Google Scholar 

  14. I. S. Tereshina, A. P. Tulyakov, S. A. Nikitin, G. A. Politova, and K. P. Skokov, Phys. Solid State 49, 315 (2007).

    Article  ADS  Google Scholar 

  15. I. S. Tereshina, S. A. Nikitin, G. A. Politova, A. A. Opalenko, E. A. Tereshina, and I. V. Telegina, Phys. Solid State 51, 92 (2009).

    Article  ADS  Google Scholar 

  16. G. A. Politova, I. S. Tereshina, S. A. Nikitin, T. G. Sochenkova, V. N. Verbetskii, A. A. Salamova, and M. V. Makarova, Phys. Solid State 47, 1909 (2005).

    Article  ADS  Google Scholar 

  17. W. J. Ren and Z. D. Zhang, Chin. Phys. B 22, 077507 (2013).

    Article  ADS  Google Scholar 

  18. G. B. Zhang, W. G. Zheng, Y. Cui, Y. G. Shi, and D. N. Shi, J. Supercond. Novel Magn. 31, 2217 (2018).

    Article  Google Scholar 

  19. E. R. Callen and H. B. Callen, Phys. Rev. 129, 578 (1963).

    Article  ADS  Google Scholar 

  20. S. Yang, H. Bao, Ch. Zhou, Yu. Wang, X. Ren, X. Song, M. Yoshitaka, K. Yoshio, T. Masahiko, and K. Keisuke, Chin. Phys. B 22, 4 (2013).

    Google Scholar 

  21. D. C. Jiles, Acta Mater. 51, 5907 (2003).

    Article  Google Scholar 

  22. M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. Wu, Nature (London, U.K.) 451, 545 (2008).

    Article  ADS  Google Scholar 

  23. W. F. Liu and X. B. Ren, Phys. Rev. Lett. 103, 257602 (2009).

    Article  ADS  Google Scholar 

  24. R. G. Burkovsky, Yu. Bronwald, D. Andronikova, B. Wehinger, M. Krisch, J. Jacobs, D. Gambetti, K. Roleder, A. Majchrowski, A. V. Filimonov, A. I. Rudskoy, S. B. Vakhrushev, and A. K. Tagantsev, Sci. Rep. 7, 41512 (2017).

    Article  ADS  Google Scholar 

  25. S. Yang, H. X. Bao, C. Zhou, Y. Wang, X. B. Ren, Y. Matsushita, Y. Katsuya, M. Tanaka, K. Kobayashi, X. P. Song, and J. R. Gao, Phys. Rev. Lett. 104, 197201 (2010).

    Article  ADS  Google Scholar 

  26. R. Bergstrom, Jr., M. Wuttig, J. Cullen, P. Zavalij, R. Briber, C. Dennis, V. O. Garlea, and M. Laver, Phys. Rev. Lett. 111, 017203 (2013).

    Article  ADS  Google Scholar 

  27. C. Zhou, S. Ren, H. Bao, S. Yang, Y. G. Yao, Y. C. Ji, X. B. Ren, Y. Matsushita, Y. Katsuya, M. Tanaka, and K. Kobayashi, Phys. Rev. B 89, 100101(R) (2014).

  28. A. Murtaza, S. Yang, M. Mi, C. Zhou, J. Q. Wang, R. Zhang, X. Q. Liao, Y. Wang, X. B. Ren, X. P. Song, and Y. Ren, Appl. Phys. Lett. 106, 132403 (2015).

    Article  ADS  Google Scholar 

  29. A. Murtaza, S. Yang, C. Zhou, T. Y. Chang, K. Y. Chen, F. H. Tian, X. P. Song, M. R. Suchomel, and Y. Ren, Appl. Phys. Lett. 109, 052904 (2016).

    Article  ADS  Google Scholar 

  30. T. Y. Ma, X. L. Liu, J. Gou, Y. Wang, C. Wu, C. Zhou, Y. Wang, S. Yang, and X. B. Ren, Phys. Rev. Mater. 3, 034411 (2019).

    Article  Google Scholar 

  31. G. Politova, T. Kaminskaya, A. Mikhailova, M. Ganin, O. Alekseeva, P. Vanina, B. Nacke, A. Filimonov, A. Rudskoy, and G. Burkhanov, Key Eng. Mater. 806, 136 (2019).

    Article  Google Scholar 

  32. G. A. Politova, N. Yu. Pankratov, P. Yu. Vanina, A. V. Fi-limonov, A. I. Rudskoy, G. S. Burkhanov, A. S. Ilyushin, and I. S. Tereshina, J. Magn. Magn. Mater. 470, 50 (2019).

    Article  ADS  Google Scholar 

  33. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (Inst. Phys., New York, 2003).

    Book  Google Scholar 

  34. I. S. Tereshina, J. Cwik, E. A. Tereshina, G. Politova, G. Burkhanov, V. 'Chzhan, A. S. Ilyushin, M. Miller, A. Zaleski, K. Nenkov, and L. Schultz, IEEE Trans. Magn. 50, 2504604 (2014).

    Article  Google Scholar 

  35. G. A. Politova, A. Yu. Karpenkov, T. P. Kaminskaya, M. A. Ganin, Ravi Kumar, and A. V. Filimonov, Nauch.-Tekh. Vedom. SPb. Politekh. Univ., Fiz.-Mat. Nauki 12, 28 (2019).

    Google Scholar 

  36. G. Politova, M. Ganin, T. Kaminskaya, A. Mikhailova, B. Nacke, A. Filimonov, and G. Burkhanov, J. Phys.: Conf. Ser. 389, 012097 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Professor S.A. Nikitin, Dr. Sci. (Phys.–Math.), and N.Yu. Pankratov, Cand. Sci. (Phys.–Math.), from the Faculty of Physics, Moscow State University, for providing the opportunity to conduct magnetostrictive studies.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00798-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Politova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politova, G.A., Ganin, M.A., Mikhailova, A.B. et al. Magnetostrictive Anomalies of Rare Earth Laves Phases with Morphotropic Phase Transition. Phys. Solid State 62, 947–953 (2020). https://doi.org/10.1134/S1063783420060232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420060232

Keywords:

Navigation