Skip to main content
Log in

AlN and GaN Nanostructures: Analytical Estimations of the Characteristics of the Electronic Spectrum

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Analytical expressions for the band gaps and characteristic velocities and effective masses of carriers are obtained for infinite flat sheets, free and decorated nanoribbons with zigzag edges, and chains of aluminum and gallium nitrides. The values obtained are compared with the characteristics for silicon carbide and carbon nanostructures calculated within the same models. The role of the substrate is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Gaps in the AlN and GaN electronic spectra at k = K are close to our values (see Fig. 4 in [11]). However, it should be noted that the calculations performed within different versions of the density functional theory (DFT) give a large spread in the Eg values (see, e.g., Tables III and IV in [14]). In particular, maximum Eg values of 5.57 and 5.53 eV for AlN and GaN, respectively, were reported in [14], which are fairly close to our elementary estimates (especially to the estimate for AlN).

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    ADS  Google Scholar 

  2. A. K. Geim and I. V. Grigorieva, Nature (London, U.K.) 499, 419 (2013).

    Article  Google Scholar 

  3. C.-J. Tong, H. Zhang, Y.-N. Zhang, H. Liu, and L.‑M. Liu, J. Mater. Chem. A 2, 17971 (2014).

    Article  Google Scholar 

  4. I. V. Antonova, Semiconductors 50, 66 (2016).

    Article  ADS  Google Scholar 

  5. S. Yang, C. Jiang, and S. Wei, Appl. Phys. Rev. 4, 021304 (2017).

    Article  ADS  Google Scholar 

  6. X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.‑B. Xu, and H. Zhu, Appl. Phys. Rev. 4, 021306 (2017).

    Article  ADS  Google Scholar 

  7. S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen, J. Gath, K. W. Jacobsen, J. J. Mortensen, T. Olsen, and K. S. Thygesen, 2D Mater. 5, 042002 (2018).

  8. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phys. Rev. B 80, 155453 (2009).

    Article  ADS  Google Scholar 

  9. T. Suzuki and Y. Yokomizo, Phys. E (Amsterdam, Neth.) 42, 2820 (2010).

  10. S. Wang, J. Phys. Soc. Jpn. 79, 064602 (2010).

    Article  ADS  Google Scholar 

  11. H. L. Zhuang, A. K. Singh, and R. G. Hennig, Phys. Rev. B 87, 165415 (2013).

    Article  ADS  Google Scholar 

  12. A. K. Singh, H. L. Zhuang, and R. G. Hennig, Phys. Rev. B 89, 245431 (2014).

    Article  ADS  Google Scholar 

  13. A. Onen, D. Kecik, E. Durgun, and S. Ciraci, Phys. Rev. B 95, 155435 (2017).

    Article  ADS  Google Scholar 

  14. D. Kecik, A. Onen, M. Konuk, E. Gürbüuz, F. Ersan, S. Cahangirov, E. Aktürk, E. Durgun, and S. Ciraci, Appl. Phys. Rev. 5, 011105 (2018).

    Article  ADS  Google Scholar 

  15. S. Yu. Davydov, Phys. Solid State 58, 804 (2016).

    Article  ADS  Google Scholar 

  16. S. Yu. Davydov, Phys. Solid State 54, 652 (2012).

    Article  ADS  Google Scholar 

  17. W. A. Harrison, The Electronic Structure and Properties of Solids (Freeman, San Francisco, CA, 1980), Vol. 1.

    Google Scholar 

  18. W. A. Harrison, Phys. Rev. B 27, 3592 (1983).

    Article  ADS  Google Scholar 

  19. G. Mukhopadhyay and H. Behera, World J. Eng. 10, 39 (2013).

    Google Scholar 

  20. Z. Z. Alisultanov, Tech. Phys. Lett. 39, 196 (2013).

    Article  ADS  Google Scholar 

  21. S. Yu. Davydov, Tech. Phys. Lett. 45, 650 (2019).

    Article  ADS  Google Scholar 

  22. S. Yu. Davydov, Phys. Solid State 61, 480 (2019).

    Article  ADS  Google Scholar 

  23. S. Yu. Davydov, Semiconductors 53, 78 (2019).

    Article  ADS  Google Scholar 

  24. J. Cserti, Am. J. Phys. 68, 896 (2000).

    Article  ADS  Google Scholar 

  25. G. Jose, R. Malla, V. Srinivasan, A. Sharma, and S. Gangadharaiah, arXiv: 1711.08204v.1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Sin’kov

APPENDIX

APPENDIX

In accordance with the Harrison theory [17, 18], at a = 1.42 Å, we obtain t = 2.38 eV for the π bond of p orbitals. For an infinite graphene (Gr) sheet, the Fermi velocity (characteristic velocity) is c = \(3at{\text{/}}2\hbar \).

For a carbon ZNR, within the same double-chain nanoribbon model but at A = B, the dispersion relation can be written as E(k) = 0 and E(k) = \( \pm t(1 \pm \sqrt {1 + 4\Phi } ){\text{/}}2\), where the energy of the p state of carbon atom is considered to be the reference point [22]. Thus, for low-energy branches at the Brillouin zone boundary, we have Eg = 0. At q = π/2 – k → 0, for a positive low-energy spectral branch, we obtain E(q) ≈ tΦ(q); hence, m* = \({{\hbar }^{2}}{\text{/}}8{{m}_{0}}{{a}^{2}}t\). In the case of DZNR, the situation is more complex: low-energy branches of E(k) have extrema at k0a ≈ 0.84, so that the band gap Eg ≈ 4t/3 arises in the spectrum (see Fig. 2a in [22] for the case of εa = 0, τ = 1). On the assumption that E(k) ≈ \({{\hbar }^{2}}(k\)\( - \;{{k}_{0}}{{)}^{2}}{\text{/}}2{{m}_{0}}m{\text{*}}{{a}^{2}}\) near the minimum, we obtain m* ≈ 0.05.

In the case of one-dimensional chain of carbon atoms (carbyne), one should distinguish metallic carbyne (or cumulene (c)) having double bonds (…=C=C=…) and semiconductor carbyne (or polyyne) with alternating single and triple bonds (…≡D–C≡C–C≡…) [2123]. In the absence of decoration, we have Eg = 0 and c = at/\(\hbar \) for cumulene, where a = 1.28 Å and t = 2.92 eV. For polyyne, we obtain Eg = 2Δt and m* = \({{\hbar }^{2}}{{\bar {\tau }}^{2}}{\text{/}}{{m}_{0}}{{a}^{2}}\Delta t\), where \(\bar {\tau }\) = Δt/t, Δt = t1t2, and t1 = 3.00 eV and t2 = 2.84 eV are the transition energies for the single and triple bonds, respectively [21].

Decoration of cumulene was considered in [22]. If cumulene is decorated by carbon atoms, we consider (as previously) the position of the p level of carbon atom as the energy reference point and obtain the dispersion in the form E(k) = 0 and E±(k) = \( \pm t\sqrt {\Phi + 2} \). Therefore, the band gap at the Brillouin zone boundary is Eg = \(2t\sqrt 2 \) and the effective mass is m* = \({{\hbar }^{2}}{\text{/}}2\sqrt 2 {{m}_{0}}{{a}^{2}}t\).

Here, we present additionally the results of [23], where free and decorated zigzag graphene edges were considered within the chain model. In the absence of decoration, E(k) = \( \pm (t{\text{/}}\sqrt 2 )(1\) + Φ ± \(\sqrt {1 + 2\Phi + {{\Phi }^{2}}} {{)}^{{1/2}}}\), so that Eg = 0. At k → π/2a, low-energy bands E(k) = \( \pm (t{\text{/}}\sqrt 2 )(1\) + Φ – \(\sqrt {1 + 2\Phi + {{\Phi }^{2}}} {{)}^{{1/2}}}\) are flattened, and the concept of effective mass cannot be introduced (as in the case of DZNR).

In the case of decoration with carbon atoms, the electron dispersion relation takes the form

$$\begin{gathered} E(k) = \pm (1 + 2{{\cos }^{2}}(ka) \\ \pm \;\cos (ka)\sqrt {1 + {{{\cos }}^{2}}(ka)} {{)}^{{1/2}}}, \\ \end{gathered} $$

so that we have Eg = 2t = 4.76 eV and c = \(at{\text{/}}\hbar \) = 0.52 × 106 m/s at the Brillouin zone boundary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. AlN and GaN Nanostructures: Analytical Estimations of the Characteristics of the Electronic Spectrum. Phys. Solid State 62, 1085–1089 (2020). https://doi.org/10.1134/S1063783420060062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420060062

Keywords:

Navigation