Skip to main content
Log in

Magnetization of Epitaxial Graphene Induced by Magnetic Metallic Substrate

  • GRAPHENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A model of the energy diagram is proposed for graphene (Gr) monolayer formed on a magnetic transition metal (MTM). The regimes of the strong and weak Gr–MTM coupling are considered; the analytical expressions have been derived for the magnetization induced by a substrate in epitaxial graphene in these regimes. It is shown that, in the strong coupling regime, a quasi-local state gives the main contribution to the magnetization; in this case, the coupling has an antiferromagnetic character. In the weak coupling regime, the main contribution to the magnetization is given by states of the d band of MTM, which leads to the ferromagnetic character of the coupling. The numerical estimations are performed for the Gr/Ni(111) and Gr/Co(poly) and they are compared with the experimental data for Gr/Ni(111) and the calculated results for Cr/Co/Ni(111). In the first case, the results agree quantitatively and, in the second case, qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).

    Article  ADS  Google Scholar 

  2. T. L. Makarova, Semiconductors 38, 615 (2004).

    Article  ADS  Google Scholar 

  3. E. Kan, Z. Li, and J. Yang, Nano 3, 433 (2006).

    Article  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  5. Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature (London, U.K.) 444, 347 (2006).

    Article  ADS  Google Scholar 

  6. V. Barone, O. Hod, and G. E. Scuseria, Nano Lett. 6, 2748 (2006).

    Article  ADS  Google Scholar 

  7. O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).

    Article  ADS  Google Scholar 

  8. V. Meunier, A. G. Souza Filho, E. B. Barros, and M. S. Dresselhaus, Rev. Mod. Phys. 88, 025005 (2016).

    Article  ADS  Google Scholar 

  9. M. Slota, A. Keerthi, W. K. Myers, E. Tretyakov, M. Baumgarten, A. Ardavan, H. Sadeghi, C. J. Lambert, A. Narita, K. Müllen, and L. Bogani, Nature (London, U.K.) 557, 691 (2018).

    Article  ADS  Google Scholar 

  10. S. Yu. Davydov, Phys. Solid State 62, 223 (2020).

  11. O. V. Yazyev, W. L. Wang, S. Meng, and E. Kaxiras, Nano Lett. 8, 766 (2008).

    Article  ADS  Google Scholar 

  12. J. J. Palacios, J. Fernández-Rossier, and L. Brey, Phys. Rev. B 77, 195428 (2008).

    Article  ADS  Google Scholar 

  13. H. Kumazaki and D. Hirashima, Phys. E (Amsterdam, Neth.) 40, 1703 (2008).

  14. W. Li, M. Zhao, Y. Xia, R. Zhang, and Y. Mu, J. Mater. Chem. 19, 9274 (2009).

    Article  Google Scholar 

  15. F. M. Hu, T. Ma, H.-Q. Lin, and J. E. Gubernatis, Phys. Rev. B 84, 075414 (2011).

    Article  ADS  Google Scholar 

  16. C. B. Crook, C. L. Constantin, T. Ahmed, J.-X. Zhu, A. V. Balatsky, and J. T. Haraldsen, Sci. Rep. 5, 12322 (2015).

    Article  ADS  Google Scholar 

  17. E. Nakhmedov, E. Nadimi, S. Vedaei, O. Alekperov, F. Tatardar, A. I. Najafov, I. I. Abbasov, and A. M. Saletsky, Phys. Rev. B 99, 125125 (2019).

    Article  ADS  Google Scholar 

  18. G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, Phys. Rev. B 71, 075402 (2004).

    Article  ADS  Google Scholar 

  19. M. Weser, Y. Rehder, K. Horn, M. Sicot, M. Fonin, A. B. Preobrajenski, E. N. Voloshina, E. Goering, and Yu. S. Dedkov, Appl. Phys. Lett. 96, 012504 (2010).

    Article  ADS  Google Scholar 

  20. H. Yang, A. D. Vu, A. Hallal, N. Rougemaille, J. Coraux, G. Chen, A. K. Schmid, and M. Chshiev, Nano Lett. 16, 145 (2016).

    Article  ADS  Google Scholar 

  21. H. Yang, G. Chen, A. A. C. Cotta, A. T. N’Diaye, S. A. Nikolaev, E. A. Soares, W. A. A. Macedo, K. Liu, A. K. Schmid, A. Fert, and M. Chshiev, Nat. Mater. 17, 605 (2018).

    Article  ADS  Google Scholar 

  22. R. Decker, J. Brede, N. Atodiresei, V. Caciuc, S. Blügel, and R. Wiesendanger, Phys. Rev. B 87, 041403(R) (2013).

  23. A. D. Vu, J. Coraux, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Rougemaille, Sci. Rep. 6, 24783 (2016).

    Article  ADS  Google Scholar 

  24. G. S. Grebenyuk, E. Yu. Lobanova, D. A. Smirnov, I. A. Eliseev, A. V. Zubov, A. N. Smirnov, S. P. Lebedev, V. Yu. Davydov, A. A. Lebedev, and I. I. Pronin, Phys. Solid State 61, 1316 (2019).

    Article  ADS  Google Scholar 

  25. D. Pesin and A. H. MacDonald, Nat. Mater. 11, 409 (2012).

    Article  ADS  Google Scholar 

  26. W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nanotechnol. 9, 794 (2014).

    Article  ADS  Google Scholar 

  27. P. Recher and B. Trauzettel, Nanotechnology 21, 302001 (2010).

    Article  Google Scholar 

  28. S. Yu. Davydov, Semiconductors 47, 95 (2013).

    Article  ADS  Google Scholar 

  29. S. Yu. Davydov, A. A. Lebedev, and O. V. Posrednik, An Elementary Introduction to the Theory of Nanosystems (Lan’, St. Petersburg, 2014) [in Russian].

  30. J. Ziman, Principles of the Theory of Solids (Cambridge Univ., Cambridge, 1976; Mir, Moscow, 1974), Chap. 10.

  31. V. Yu. Irkhin and Yu. P. Irkhin, The Electronic Structure, Correlation Effects and Physical Properties of D- and F-Metals and Their Compounds (UrO RAN, Yekaterinburg, 2004; Cambridge International Science Publ., 2007), Chap. 2.

  32. S. Yu. Davydov, Phys. Solid State 58, 804 (2016).

    Article  ADS  Google Scholar 

  33. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1995; Nauka, Moscow, 1978).

  34. W. A. Harrison, The Electronic Structure and Properties of Solids (Freeman, San Francisco, CA, 1980).

    Google Scholar 

  35. Physical Values, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  36. W. A. Harrison, Phys. Rev. B 27, 3592 (1983).

    Article  ADS  Google Scholar 

  37. T. O. Wehling, E. Sasıoglu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805 (2011).

    Article  ADS  Google Scholar 

  38. V. S. Fomenko, Emission Properties of Materials, The Handbook (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  39. J.-H. Kim, J. H. Hwang, J. Suh, S. Tongay, S. Kwon, C. C. Hwang, J. Wu, and J. Y. Park, Appl. Phys. Lett. 103, 171604 (2013).

    Article  ADS  Google Scholar 

  40. A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99, 076802 (2007).

    Article  ADS  Google Scholar 

  41. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2008).

    Article  ADS  Google Scholar 

  42. S. Yu. Davydov, Phys. Solid State 60, 812 (2018).

    Article  ADS  Google Scholar 

  43. S. Yu. Davydov, Phys. Solid State 56, 412 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

APPENDIX

APPENDIX

Consider the problem of adsorption of an individual atom on MTM. In this case, for the density of states, we obtain, instead of Eq. (7), expression

$${{\bar {\rho }}_{\sigma }}(\omega ) = \frac{1}{\pi }\frac{{{{\Gamma }_{\sigma }}(\omega )}}{{[{{{(\omega - {{\varepsilon }_{0}} - {{\Lambda }_{\sigma }}(\omega )]}}^{2}} + \Gamma _{\sigma }^{2}(\omega )}},$$
((A1))

where ε0 is the adatom quasi-level energy, Γσ(ω) and Λσ(ω) are given by Eqs. (4) and (5). Assume that the adatom orbital energy ε0 = 0, which corresponds to the Dirac point. The matter is that here (in the strong coupling regime Γ/t\( \gg \) 1) we consider a pseudo-isolated epigraphene atom, rather than a solitary carbon adatom. The maxima of density of states (A1) correspond to the roots of equation

$$\omega - {{\Lambda }_{\sigma }}(\omega ) = 0.$$
((A2))

If inequality 1 < \({{(d{{\Lambda }_{\sigma }}(\omega ){\text{/}}d\omega )}_{{{{\omega }_{{0\sigma }}}}}}\), there is only one root \(\omega _{\sigma }^{*}\) in the region of the continuous spectrum (Fig. 1b). Since dΛσ(ω)/dω = WdΓ/π[(Wd/2)2 – (ω – ω)2], we obtain πWd/4Γ < 1, which is valid for the Gr/Ni(111) system, according to the estimations presented in the text. Assuming that |\(\omega _{\sigma }^{*}\) – ω| \( \ll \)Wd/2, we have Λσ(ω) ≈ –4(ω – ω)Γ/πWd, and, instead of Eq. (A2), we have \(\omega _{\sigma }^{*}\) + 20(Vd/Wd)2(\(\omega _{\sigma }^{*}\) – ω) = 0. Because, according to the abovementioned estimations, 20(Vd/Wd)2\( \gg \) 1, we have \(\omega _{\sigma }^{*}\) ≈ ω. Then, in the vicinity of the maximum, the density of states can be represented as \({{\bar {\rho }}_{\sigma }}(\omega )\) ≈ Γ/π[(ω – ω)2 + Γ2]. Since EF = 0, we obtain the contribution of band states (\({{\bar {n}}_{\sigma }}\))band to the occupation number \({{\bar {n}}_{\sigma }}\) from Eq. (10) as

$${{({{\bar {n}}_{\sigma }})}_{{{\text{band}}}}} \approx \frac{1}{\pi }\left( {\arctan \frac{{{{W}_{d}}}}{{2\Gamma }} - \frac{{{{\omega }_{{0\sigma }}}}}{\Gamma }} \right).$$
((A3))

In the case that |\(\omega _{\sigma }^{*}\) – ω| \( \gg \)Wd/2, we have two solutions of Eq. (A2) corresponding to local levels with energies \(\omega _{\sigma }^{ + }\)\( \pm {{V}_{d}}\sqrt 5 \) + ω/2. We refine: these levels can be taken to be local only with respect to MTM, since they lie off the dσ subband of a metal (Fig. 1b). Actually, these levels are quasi-local or resonant, since they are overlapping with the continuous spectrum of graphene. However, we will perform estimations assuming their local, since the density of states of MTM is much higher than the graphene density of states (Fig. 1). It is easy to see that this simplification is of the same order as the neglect of the s band of MTM.

The occupation number of level \(\omega _{\sigma }^{ - }\) calculated by formula (\({{\bar {n}}_{\sigma }}\))loc = \(\left| {1 - d{{\Lambda }_{\sigma }}(\omega ){\text{/}}d\omega } \right|_{{\omega _{\sigma }^{ - }}}^{{ - 1}}\) [29] is

$${{({{\bar {n}}_{\sigma }})}_{{{\text{loc}}}}} \approx \frac{1}{2}\left( {1 + \frac{{{{\omega }_{{0\sigma }}}}}{{{{V}_{d}}\sqrt 5 }}} \right).$$
((A4))

The resulting magnetization counted per one epigraphene atom is \(\bar {m}\) = \({{\bar {n}}_{ \uparrow }}\)\({{\bar {n}}_{ \downarrow }}\), where \({{\bar {n}}_{\sigma }}\) = (\({{\bar {n}}_{\sigma }}\))band + (\({{\bar {n}}_{\sigma }}\))loc. Using Eqs. (A3) and (A4), we obtain Eq. (13) of this report. Since the summary occupation number of epigraphene atom is \(\bar {n}\) = \(\sum\nolimits_\sigma {[{{{({{{\bar {n}}}_{\sigma }})}}_{{{\text{band}}}}}} \) + \({{({{\bar {n}}_{\sigma }})}_{{{\text{loc}}}}}]\), then

$$\bar {n} \approx 1 + \frac{2}{\pi }\arctan \frac{{{{\eta }^{2}}}}{{2\pi }},$$
((A5))

where η = Wd/Vd\(\sqrt 5 \). In the framework of the Harrison theory, we have η ≈ 0.63, so that \(\bar {n}\) ≈ 1.04. We emphasize that the local state gives the main contribution to \(\bar {n}\). Since the model energy diagram considered in this work for the Gr/Ni(111) is symmetric with respect to EF = 0 (Fig. 1); the exact value of the occupation number must be 1. Thus, the error is only 4%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. Magnetization of Epitaxial Graphene Induced by Magnetic Metallic Substrate. Phys. Solid State 62, 378–383 (2020). https://doi.org/10.1134/S1063783420020080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420020080

Keywords:

Navigation