Skip to main content
Log in

Paramagnetic Mn Antisite Defects in Nanoceramics of Aluminum–Magnesium Spinel

  • DIELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of structure and size parameters on the formation of intrinsic and impurity paramagnetic centers in nanoceramics of aluminum–magnesium spinel is studied. The studied samples (grain size ~30 nm) are obtained by thermobaric synthesis. Microcrystalline ceramics and MgAl2O4 single crystal are used as the reference samples. Characteristic paramagnetic centers of Mn2+ (hyperfine structure constant (HFS) A = 82 G) are present in both single crystal and microceramics. In the studied samples of nanoceramics in the initial state, both impurity Mn2+ and intrinsic F+ centers exist. Unlike the nanoceramics, the centers of F+ type in the reference sample appear only after the irradiation with accelerated electrons (130 keV). The parameters of Mn2+ centers in nanoceramics significantly differ on that in microceramics and single crystal. EPR signal of Mn2+ centers in nanoceramics is characterized by two anomalous constant HFS (A1 = 91.21 G, A2 = 87.83 G) caused by two types of octahedrally coordinated manganese ions ([Mn2+]\(_{{{\text{A}}{{{\text{l}}}^{{{\text{3 + }}}}}}}\) antisite defects). The features of spectral parameters of manganese centers correlate with a decrease in the cell parameter of MgAl2O4 in the nanostructural state. The observed effects are interpreted based on the assumed scheme of [Mn2+]\(_{{{\text{A}}{{{\text{l}}}^{{{\text{3 + }}}}}}}\) charge compensation by the aluminum antisite defect and F+ center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. M. Costantini, G. Lelong, M. Guillaumet, W. J. Weber, S. Takaki, and K. Yasuda, J. Phys.: Condens. Matter 28, 325901 (2016).

    Google Scholar 

  2. A. Ibarra, D. Bravo, M. A. Garcia, J. Llopis, F. J. Lopez, and F. Garner, J. Nucl. Mater. 258, 1902 (1998).

    Article  ADS  Google Scholar 

  3. G. P. Summers, G. S. White, K. H. Lee, and J. H. Crawford, Jr., Phys. Rev. B 21, 2578 (1980).

    Article  ADS  Google Scholar 

  4. Yu. Kazarinov, V. Kvatchadze, V. Gritsina, M. Abramishvili, Z. Akkhvledianni, M. Galustashvili, G. Dekanozishvili, T. Kalabegishvili, and T. Tavkelidze, Vopr. At. Nauki Tekh., No. 5, 8 (2017).

  5. I. V. Afanasyev-Charkin, D. W. Cooke, V. T. Gritsyna, M. Ishimaru, and K. Sickafus, Vacuum 58, 2 (2000).

    Article  Google Scholar 

  6. M. Ishimaru, Y. Hirotsu, I. V. Afanasyev-Charkin, and K. E. Sickafus, J. Phys.: Condens. Matter 14, 1237 (2002).

    ADS  Google Scholar 

  7. M. Ishimaru, Y. Hirotsu, and K. E. Sickafus, Microscopy 51, 219 (2002).

    Article  Google Scholar 

  8. N. Kishimoto, Y. Takeda, N. Umeda, V. T. Gritsyna, C. G. Lee, and T. Saito, Nucl. Instrum. Methods Phys. Res. B 166, 840 (2000).

    Article  ADS  Google Scholar 

  9. E. Hanamura, Y. Kawabe, H. Takashima, T. Sato, and A. Tomita, J. Nonlin. Opt. Phys. Mater. 12, 467 (2003).

    Article  Google Scholar 

  10. V. T. Gritsyna, V. A. Kobyakov, and L. A. Litvinov, J. Appl. Spectrosc. 45, 837 (1986).

    Article  ADS  Google Scholar 

  11. D. Valiev, S. Stepanov, O. Khasanov, E. Dvilis, E. Polisadova, and V. Paygin, Opt. Mater. 91, 396 (2019).

    Article  ADS  Google Scholar 

  12. S. Sawai and T. Uchino, J. Appl. Phys. 112, 103523 (2012).

    Article  ADS  Google Scholar 

  13. A. Lushchik, S. Dolgov, E. Feldbach, R. Pareja, A. I. Popov, E. Shablonin, and V. Seeman, Nucl. Instrum. Methods Phys. Res., Sect. B 435, 31 (2018).

    Google Scholar 

  14. A. Navrotsky and O. J. Kleppa, J. Inorg. Nucl. Chem. 29, 2701 (1967).

    Article  Google Scholar 

  15. V. D’Ippolito, G. B. Andreozzi, D. Bersani, and P. P. Lottici, J. Raman Spectrosc. 46, 1255 (2015).

    Article  ADS  Google Scholar 

  16. Y. Zou, D. He, X. Wei, R. Yu, T. Lu, X. Chang, S. Wang, and L. Lei, Mater. Chem. Phys. 123, 529 (2010).

    Article  Google Scholar 

  17. J. S. Shaffer, H. A. Farach, and C. P. Poole, Jr., Phys. Rev. B 13, 1869 (1976).

    Article  ADS  Google Scholar 

  18. E. Simanek and K. A. Mueller, Chem. Phys. Lett. 4, 482 (1970).

    Article  ADS  Google Scholar 

  19. A. N. Kiryakov, A. F. Zatsepin, T. V. Dyachkova, A. P. Tytunyunnik, Y. G. Zainulin, G. Yakovlev, V. A. Pustovarov, and D. Bautimirov, IOP Conf. Ser.: Mater. Sci. Eng. 443, 012014 (2018).

  20. B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    Article  Google Scholar 

  21. A. C. Larson and R. B. von Dreele, Report LAUR No. 86 (1994).

  22. H. Maekawa, S. Kato, K. Kawamura, and T. Yokokawa, Am. Mineral. 82, 1125 (1997).

    Article  ADS  Google Scholar 

  23. P. Lombard, B. Boizot, N. Ollier, A. Jouini, and A. Yoshikawa, J. Cryst. Growth 311, 899 (2009).

    Article  ADS  Google Scholar 

  24. A. N. Kiryakov, A. F. Zatsepin, Y. V. Shchapova, E. V. Golyeva, and V. A. Pustovarov, KnE Mater. Sci. 4, 98 (2018).

    Google Scholar 

  25. A. N. Kiryakov, A. F. Zatsepin, A. I. Slesarev, T. V. Dyachkova, Y. G. Zainulin, M. Mashkovtsev, G. Yakovlev, and A. S. Vagapov, AIP Conf. Proc. 2015, 020039 (2018).

    Article  Google Scholar 

  26. V. Kortov, S. Zvonarev, A. Kiryakov, and D. Ananchenko, Mater. Chem. Phys. 170, 168 (2016).

    Article  Google Scholar 

  27. Ch. P. Poole, Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Dover, New York, 1997).

    Google Scholar 

  28. F. Méducin, S. A. Redfern, Y. Le Godec, H. J. Stone, M. G. Tucker, M. T. Dove, and W. G. Marshall, Am. Mineral. 89, 981 (2004).

    Article  ADS  Google Scholar 

  29. N. B. Hannay and C. P. Smyth, J. Am. Chem. Soc. 68, 171 (1946).

    Article  Google Scholar 

  30. F. W. Breivogel, Jr. and V. Sarkissian, J. Chem. Phys. 48, 2442 (1968).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Yu.V. Shchapova and E.V. Gol’eva for the samples of single-crystal and transparent ASM microceramics. The authors express special thanks to V.A. Vazhenin for useful discussions.

Funding

This work was financially supported by the Ministry of Education and Science (state assignment no. 3.1485.2017/4.6) and the Government of the Russian Federation (act 211, contract no. 02.A03.21.0006), as well as the project “New functional materials for advanced technologies АААА-А19-119031890025-9.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kiryakov.

Ethics declarations

The authors declare that have no conflicts of interest.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zatsepin, A.F., Kiryakov, A.N., Baytimirov, D.R. et al. Paramagnetic Mn Antisite Defects in Nanoceramics of Aluminum–Magnesium Spinel. Phys. Solid State 62, 137–143 (2020). https://doi.org/10.1134/S1063783420010370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010370

Keywords:

Navigation