Skip to main content
Log in

Influence of Antisite Defects in Yttrium–Aluminum Garnet on Paramagnetic Centers of Ce3+ and Tb3+

  • IMPURITY CENTERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In yttrium aluminum garnet (YAG) crystals containing terbium and cerium impurities, along with the main EPR signals of Tb3+ and Се3+ ions located in the dodecahedral sites of the YAG lattice in a regular environment, EPR lines with a lower (several percent) intensity were observed. They also belong to the paramagnetic centers of terbium and cerium, but are characterized by slightly altered parameters—the initial level splitting for non-Kramers Tb3+ ions and g-factors for Се3+ ions. It is shown that the nature of such centers and their number can be explained by the presence of YAl antisite defects, i.e. yttrium ions in the octahedral aluminum positions, in the environment of Tb3+ and Се3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Kaminskii, Laser Crystals. Their Physics and Properties (Springer, Berlin, 1990).

    Google Scholar 

  2. V. Bachmann, C. Ronda, and A. Meijerink, Chem. Mater. 21, 2077 (2009).

    Google Scholar 

  3. Y. S. Lin, R. S. Liu, and B.-M. Cheng, J. Electrochem. Soc. 152, J41 (2005).

    Google Scholar 

  4. A C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A. N. Vasil’ev, A. Yoshikawa, and R. Zhu, IEEE Trans. Nucl. Sci. 65, 1977 (2018).

    ADS  Google Scholar 

  5. P. Slyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang, C. Duan, N. Kukharchyk, A. D. Wieck, R. Kolesov, and J. Wrachtrup, Nat. Commun. 5, 3895 (2014).

    ADS  Google Scholar 

  6. S. Geller, G. P. Espinosa, L. D. Fullmer, and P. B. Crandall, Mater. Res. Bull. 7, 1219 (1972).

    Google Scholar 

  7. M. K. Ashurov, Y. K. Voronko, V. Osiko, A. Sobol, and M. Timosheckin, Phys. Status Solidi A 42, 101 (1977).

    ADS  Google Scholar 

  8. Kh. S. Bagdasarov, E. A. Fedorov, V. I. Zhekov, and V. A. Lobachev, Tr. IOFAN 19, 112 (1989).

    Google Scholar 

  9. J. Dong and K. Lu, Phys. Rev. B 43, 8808 (1991).

    ADS  Google Scholar 

  10. C. Landron, S. Lefloch, M. Gervais, J. P. Coutures, and D. Bazin, Phys. Status Solidi B 196, 25 (1996).

    ADS  Google Scholar 

  11. P. Novak, J. Englich, H. Stepankova, J. Kohout, H. Luetgemeier, K. Wagner, and W. Tolksdorf, J. Phys. IV (Paris) 7, C1-283 (1997).

    Google Scholar 

  12. V. Babin, V. Gorbenko, I. Kondakova, T. Karner, V. V. Laguta, M. Nikl, S. Zazubovich, and Yu. Zorenko, J. Phys. D 44, 315402 (2011).

    Google Scholar 

  13. M. M. Kuklja and R. Pandey, J. Am. Ceram. Soc. 82, 2881 (1999).

    Google Scholar 

  14. M. M. Kuklja, J. Phys.: Condens. Matter 12, 2953 (2000).

    ADS  Google Scholar 

  15. Bo Liu, Mu Gu, Xiaolin Liu, Shiming Huang, and Chen Ni, Appl. Phys. Lett. 94, 121910 (2009).

    ADS  Google Scholar 

  16. A. B. Munoz-Garcia, E. Artacho, and L. Seijo, Phys. Rev. B 80, 014105 (2009).

    ADS  Google Scholar 

  17. A. B. Munoz-Garcia, Z. Barandiaran, and L. Seijo, J. Mater. Chem. 22, 19888 (2012).

    Google Scholar 

  18. M. Nikl, V. V. Laguta, and A. Vedda, Phys. Status Solidi B 245, 1701 (2008).

    ADS  Google Scholar 

  19. C. R. Stanek, K. J. McClellan, M. R. Levy, C. Milanese, and R. W. Grimes, Nucl. Instrum. Methods Phys. Res., Sect. A 579, 27 (2007).

    Google Scholar 

  20. H. R. Lewis, J. Appl. Phys. 37, 739 (1966).

    ADS  Google Scholar 

  21. G. R. Asatryan, D. D. Kramushchenko, Yu. A. Uspenskaya, P. G. Baranov, and A. G. Petrosyan, Phys. Solid State 56, 1150 (2014).

    ADS  Google Scholar 

  22. V. V. Laguta, A. M. Slipenyuk, M. D. Glinchuk, I. P. Bykov, Y. Zorenko, M. Nikl, J. Rosa, and K. Nejezchleb, Rad. Meas. 42, 835 (2007).

    Google Scholar 

  23. E. V. Edinach, Y. A. Uspenskaya, A. S. Gurin, R. A. Babunts, H. R. Asatryan, N. G. Romanov, A. G. Badalyan, and P. G. Baranov, Phys. Rev. B 100, 104435 (2019).

    ADS  Google Scholar 

  24. Kh. S. Bagdasarov, in Modern Crystallography, Ed. by B. K. Vainshtein (Nauka, Moscow, 1980), Vol. 3, p. 337 [in Russian].

    Google Scholar 

  25. A. G. Petrosyan, J. Cryst. Growth 139, 372 (1994).

    ADS  Google Scholar 

  26. A. G. Petrosyan, G. O. Shirinyan, K. L. Ovanesyan, and A. A. Avetisyan, Krist. Technol. 13, 43 (1978).

    Google Scholar 

  27. B. Cockayne, J. M. Roslington, and A. W. Vere, J. Mater. Sci. 8, 382 (1973).

    ADS  Google Scholar 

  28. A. A. Chernov, Cryst. Ann. Rev. Mater. Sci. 3, 373 (1973).

    Google Scholar 

  29. A. G. Petrosyan, K. L. Ovanesyan, R. V. Sargsyan, G. O. Shirinyan, D. Abler, E. Auffray, P. Lecoq, C. Dujardin, and C. Pedrini, J. Cryst. Growth 312, 3136 (2010).

    ADS  Google Scholar 

  30. A. G. Petrosyan and G. O. Shirinyan, Neorg. Mater. 29, 258 (1993).

    Google Scholar 

  31. E. V. Edinach, Yu. A. Uspenskaya, A. S. Gurin, R. A. Babunts, G. R. Asatryan, N. G. Romanov, A. G. Badalyan, and P. G. Baranov, Phys. Solid State 61, 1820 (2019).

    ADS  Google Scholar 

  32. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford Univ., London, 1970).

    Google Scholar 

  33. P. A. Forrester and C. F. Hempstead, Phys. Rev. 126, 923 (1962).

    ADS  Google Scholar 

  34. G. S. Shakurov, B. Z. Malkin, A. R. Zakirov, A. G. Okhrimchuk, L. N. Butvina, N. V. Liehkova, and V. N. Zavgorodnev, Appl. Magn. Res. 26, 579 (2004).

    Google Scholar 

  35. A. A. Konovalov, D. A. Lis, K. A. Subbotin, V. F. Tarasov, and E. V. Zharikov, Appl. Magn. Res. 45, 193 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Asatryan.

Ethics declarations

Authors declare that they have no conflicts of interest.

Additional information

Translated by S. Efimov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asatryan, G.R., Edinach, E.V., Uspenskaya, Y.A. et al. Influence of Antisite Defects in Yttrium–Aluminum Garnet on Paramagnetic Centers of Ce3+ and Tb3+ . Phys. Solid State 62, 2110–2115 (2020). https://doi.org/10.1134/S1063783420110049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110049

Keywords:

Navigation