Skip to main content
Log in

Photophysics of Semiconductor Polymer Nanocomposite with Fullerene C60 and Endohedral Metallofullerene Ho@C82

  • FULLERENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The photoexcitation energy transfer in donor–acceptor (DA) systems formed from a mixture of semiconductor polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with fullerene C60 and endohedral metallofullerene Ho@C82 have been investigated. It is established that the migration of excitons between polymer segments significantly affect the quenching of MEH-PPV luminescence. The Forster radii of nonradiative energy transfer are estimated for the DA systems under study. It is shown that the DA system formed using endohedral metallofullerenes is most efficient. Model photovoltaic cells with different C60 and Ho@C82 doping levels are formed based on MEH-PPV. The spectral sensitivity of photovoltage and kinetics of rise in the photovoltage signal under pulsed irradiation are measured for the formed cells. The charge carrier mobility in the polymer composites under study is estimated. It is established that a change in the endohedral metallofullerene concentration within 1–2% makes it possible to change the effective free-carrier mobility of the polymer heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. Kong, D. Nordlund, J. S. Jin, S. Y. Kim, S.-M. Jin, D. Huang, Y. Zheng, C. Karpovich, G. Sertic, H. Wang, J. Li, G. Weng, F. Antonio, M. Mariano, S. Maclean, T. Goh, J. Y. Kim, and A. D. Taylor, ACS Energy Lett. 4, 1034 (2019).

    Article  Google Scholar 

  2. L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, and Y. Chen, Science (Washington, DC, U. S.) 361, 1094 (2018).

    Article  ADS  Google Scholar 

  3. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photon. 3, 297 (2009).

    Article  ADS  Google Scholar 

  4. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nat. Photon. 3, 649 (2009).

    Article  ADS  Google Scholar 

  5. Y. Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li, and L. Yu, J. Am. Chem. Soc. 131, 56 (2009).

    Article  Google Scholar 

  6. N. Blouin, A. Michaud, and M. Leclerc, Adv. Mater. 19, 2295 (2007).

    Article  Google Scholar 

  7. F. Banishoeib, A. Henckens, S. Fourier, G. Vanhooyland, M. Breselge, J. Manca, T. J. Cleij, L. Lutsen, D. Vanderzande, L. H. Nguyen, H. Neugebauer, and N. S. Sariciftci, Thin Solid Films 516, 3978 (2008).

    Article  ADS  Google Scholar 

  8. Y. A. M. Ismail, T. Soga, and T. Jimbo, Sol. Energy Mater. Sol. Cells 94, 1406 (2010).

    Article  Google Scholar 

  9. Y. A. M. Ismail, T. Soga, and T. Jimbo, Sol. Energy Mater. Sol. Cells 93, 1582 (2009).

    Article  Google Scholar 

  10. W. Brutting, Physics of Organic Semiconductors (Wiley, New York, 2005).

    Book  Google Scholar 

  11. H. Peisert, M. Knupfer, F. Zhang, A. Petr, L. Dunsch, and J. Fink, Appl. Phys. Lett. 83, 3930 (2003).

    Article  ADS  Google Scholar 

  12. Y.-K. Kim, J. W. Kim, and Y. Park, Appl. Phys. Lett. 94, 063305 (2009).

    Article  ADS  Google Scholar 

  13. R. B. Ross1, C. M. Cardona, and D. M. Guldi, Nat. Mater. 8, 208 (2009).

  14. I. E. Kareev, V. P. Bubnov, and D. N. Fedutin, Tech. Phys. 54, 1695 (2009).

    Article  Google Scholar 

  15. V. P. Bubnov, E. E. Laukhina, I. E. Kareev, V. K. Koltover, T. G. Prokhorova, E. B. Yagubskii, and Y. P. Koz-min, Chem. Mater. 14, 1004 (2002).

    Article  Google Scholar 

  16. I. E. Kareev, V. M. Nekrasov, and V. P. Bubnov, Tech. Phys. 60, 102 (2015).

    Article  Google Scholar 

  17. I. E. Kareev, V. P. Bubnov, and E. B. Yagubskii, Russ. Chem. Bull. 56, 2140 (2007).

    Article  Google Scholar 

  18. I. E. Kareev, V. M. Nekrasov, A. E. Dutlov, V. M. Martynenko, V. P. Bubnov, E. Laukhina, J. Veciana, and C. Rovira, Russ. J. Phys. Chem. A 91, 536 (2017).

    Article  Google Scholar 

  19. I. G. Scheblykin, A. Yartsev, T. Pullerits, V. Gulbinas, and V. Sundstrom, J. Phys. Chem. B 111, 6303 (2007).

    Article  Google Scholar 

  20. M. M. L. Grage, P. W. Wood, A. Ruseckas, T. Pullerits, W. Mitchell, P. L. Burn, I. D. W. Samuel, and V. Sundstrom, J. Chem. Phys. 118, 7644 (2003).

    Article  ADS  Google Scholar 

  21. V. I. Arkhipov and H. Bassler, Phys. Status Solidi 201, 1152 (2004).

    Article  ADS  Google Scholar 

  22. S. A. Zapunidi, Yu. V. Krylova, and D. Yu. Paraschuk, Phys. Rev. B 79, 205208 (2009).

    Article  ADS  Google Scholar 

  23. S. A. Arnautov, E. M. Nechvolodova, A. A. Bakulin, S. G. Elizarov, A. N. Khodarev, D. S. Martyanov, and D. Y. Paraschuk, Synth. Met. 147, 287 (2004).

    Article  Google Scholar 

  24. Handbook of Conducting Polymers, Ed. by T. A. Skotheim (Marcel Dekker, New York, 1986).

    Google Scholar 

  25. J. Tauc, Phys. Status Solidi 15, 627 (1996).

    Article  Google Scholar 

  26. P. Sladekp, A. Stahel, and M. L. Theye, Philos. Mag. B 71, 871 (1995).

    Article  ADS  Google Scholar 

  27. D. Keith, Mater. Res. Soc. Symp. Proc. 871, 1 (2005).

    Google Scholar 

  28. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  29. V. I. Arkhipov, M. S. Iovu, A. I. Rudenko, and S. D. Shutov, Phys. Status Solidi A 54, 67 (1979).

    Article  ADS  Google Scholar 

  30. H. Bassler, Phys. Status Solidi B 175, 15 (1993).

    Article  ADS  Google Scholar 

  31. M. C. Gather, S. Mansurova, and K. Meerholz, Phys. Rev. B 75, 165203 (2007).

    Article  ADS  Google Scholar 

  32. L. J. A. Koster, M. Kemerink, M. M. Wienk, K. Maturova, and R. A. J. Janssen, Adv. Mater. 23, 1670 (2011).

    Article  Google Scholar 

  33. H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, F. Schaeffler, A. Hinsch, M. Ch. Lux-Steiner, and N. S. Sariciftci, Thin Solid Films 511–512, 587 (2006).

    Article  ADS  Google Scholar 

  34. I. E. Kareev, V. P. Bubnov, E. K. Alidzhanov, S. N. Pashkevich, Yu. D. Lantukh, S. N. Letuta, and D. A. Razdobreev, Phys. Solid State 58, 1924 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

This study was performed within government contract no. 0089-2019-0011 and supported by the Ministry of Science and Higher Education of the Russian Federation within research project no. 0743-2017-0003 (3.6358.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. E. Kareev or E. K. Alidzhanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kareev, I.E., Bubnov, V.P., Alidzhanov, E.K. et al. Photophysics of Semiconductor Polymer Nanocomposite with Fullerene C60 and Endohedral Metallofullerene Ho@C82. Phys. Solid State 62, 206–213 (2020). https://doi.org/10.1134/S1063783420010163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010163

Keywords:

Navigation