Skip to main content
Log in

Anisotropic Carrier Transport in n-Doped 6H-SiC

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In this paper, a study is presented on the charge transport in n-type doped semiconductor 6H-SiC (in both transient and steady state) using a nonequilibrium quantum kinetic theory derived from the method of nonequilibrium statistical operator (NSO), which furnishes a clear description of the irreversible phenomena that occur in the evolution of the analyzed system. We obtain theoretically the dependence on the electric field (applied in the orientation perpendicular or parallel to the c-axis) of the basic macrovariables: the “electron drift velocity” and the “nonequilibrium temperature.” The “peak points” in time evolution of this macrovariables are derived and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide Bandgap Semiconductors (Springer, Berlin, 2006).

    Google Scholar 

  2. C. Persson and A. F. Silva, in Optoelectronic Devices: III-Nitrides, Ed. by M. Henini and M. Razeghi (Elsevier, London, 2005), Vol. 1, Chap. 17, p. 479.

    Google Scholar 

  3. T. Kimoto, Jpn. J. Appl. Phys. 54, 040103 (2015).

    Article  ADS  Google Scholar 

  4. F. Roccaforte, P. Fiorenza, G. Greco, R. Nigro, F. Giannazzo, F. Iucolano, and M. Saggio, Microelectron. Eng. 187–188, 66 (2018).

    Article  Google Scholar 

  5. T. K. Gachovska and J. L. Hudgins, in Power Electronics Handbook, Ed. by M. H. Rashid, 4th ed. (Butterworth-Heinemann, Oxford, 2018), Chap. 5.

    Google Scholar 

  6. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974).

    Google Scholar 

  7. D. N. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Academie, Wiley VCH, Berlin, 1997), Vols. 1, 2.

  8. A. I. Akhiezer and S. V. Peletminskii, Methods of Statistical Physics (Pergamon, Oxford, UK, 1981).

    Google Scholar 

  9. R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Predictive Statistical Mechanics: A Nonequilibrium Statistical Ensemble Formalism (Kluwer Academic, Dordrecht, 2002).

    Book  Google Scholar 

  10. R. Luzzi and A. R. Vasconcellos, Fortschr. Phys. Prog. Phys. 38, 887 (1990).

    Article  ADS  Google Scholar 

  11. J. G. Ramos, A. R. Vasconcellos, and R. Luzzi, Fortschr. Phys. Prog. Phys. 43, 265 (1995).

    Article  ADS  Google Scholar 

  12. L. Lauck, A. R. Vasconcellos, and R. Luzzi, Phys. A (Amsterdam, Neth.) 168, 789 (1990).

  13. R. Luzzi, A. R. Vasconcellos, J. G. Ramos, and C. G. Rodrigues, Theor. Math. Phys. 194, 4 (2018).

    Article  Google Scholar 

  14. A. L. Kuzemsky, Theor. Math. Phys. 194, 30 (2018).

    Article  Google Scholar 

  15. V. G. Morozov, Theor. Math. Phys. 194, 105 (2018).

    Article  Google Scholar 

  16. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, J. Phys. D: Appl. Phys. 38, 3584 (2005).

    Article  ADS  Google Scholar 

  17. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, Solid State Commun. 140, 135 (2006).

    Article  ADS  Google Scholar 

  18. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, Braz. J. Phys. 36, 255 (2006).

    ADS  Google Scholar 

  19. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, Eur. Phys. J. B 72, 67 (2009).

    Article  ADS  Google Scholar 

  20. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, J. Appl. Phys. 108, 033716 (2010).

    Article  ADS  Google Scholar 

  21. C. G. Rodrigues, A. A. P. Silva, C. A. B. Silva, A. R. Vasconcellos, J. G. Ramos, and R. Luzzi, Braz. J. Phys. 40, 63 (2010).

    Article  ADS  Google Scholar 

  22. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, Transp. Theory. Stat. Phys. 29, 733 (2000).

    Article  ADS  Google Scholar 

  23. R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Statistical Foundations of Irreversible Thermodynamics (Teubner-Bertelsmann, Springer, Stuttgart, 2000).

  24. D. Jou and J. Casas-Vazquez, Rep. Prog. Phys. 66, 1937 (2003).

    Article  ADS  Google Scholar 

  25. R. Luzzi, A. R. Vasconcellos, J. Casas-Vazquez, and D. Jou, J. Chem. Phys. 107, 7383 (1997).

    Article  ADS  Google Scholar 

  26. B. K. Ridley, J. Phys. C: Solid State Phys. 10, 1589 (1977).

    Article  ADS  Google Scholar 

  27. W. Suttrop, G. Pensl, W. J. Choyke, R. Stein, and S. Leibenzeder, J. Appl. Phys. 72, 3708 (1992).

    Article  ADS  Google Scholar 

  28. C. Persson and U. Lindefelt, J. Appl. Phys. 82, 5496 (1997).

    Article  ADS  Google Scholar 

  29. H. Iwataa and K. M. Itohb, J. Appl. Phys. 89, 6228 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Rodrigues.

Ethics declarations

The authors hereby confirm that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferracioli, R.T., Rodrigues, C.G. & Luzzi, R. Anisotropic Carrier Transport in n-Doped 6H-SiC. Phys. Solid State 62, 110–115 (2020). https://doi.org/10.1134/S1063783420010102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010102

Navigation