Skip to main content
Log in

Impact of Elastic Stress on Crystal Phase of GaP Nanowires

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In most cases, III–V compounds form a crystal structure, which is stable under certain experimental conditions. Meantime crystal phase of III–V nanowires may differ from the stable phase of bulk structures. In this work, we show that the elastic stress could be the sole factor responsible for nanowire growth in the metastable phase. Depending on the experimental conditions of GaP nanowire growth, the elastic stress contribution to nucleation barrier can be greater than the difference in the energy of the formation of the cubic and hexagonal phase, and thus, it causes the growth in metastable wurtzite crystal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. E. Husanu, D. Ercolani, M. Gemmi, and L. Sorba, Nanotechnol. 25, 205601 (2014).

    Article  ADS  Google Scholar 

  2. V. V. Fedorov, A. D. Bolshakov, L. N. Dvoretckaia, G. A. Sapunov, D. A. Kirilenko, A. M. Mozharov, K. Y. Shugurov, V. A. Shkoldin, G. E. Cirlin, and I. S. Mukhin, J. Semicond. 52, 2092 (2018).

  3. N. N. Halder, A. Kelrich, S. Cohen, and D. Ritter, Nanotechnology 28, 465603 (2017).

    Article  ADS  Google Scholar 

  4. N. N. Halder, S. Cohen, D. Gershoni, and D. Ritter, Appl. Phys. Lett. 112, 133107 (2018).

    Article  ADS  Google Scholar 

  5. D. Kriegner, E. Wintersberger, K. Kawaguchi, J. Wallentin, M. T. Borgström, and J. Stangl, Nanotechnology 22, 425704 (2011).

    Article  Google Scholar 

  6. M. S. Yashinski, H. R. Gutiérrez, and C. L. Muhlstein, Nanotechnology 28, 065703 (2017).

    Article  ADS  Google Scholar 

  7. D. Kriegner, S. Assali, A. Belabbes, T. Etzelstorfer, V. Holy, T. Schülli, F. Bechstedt, E. P. A. M. Bakkers, G. Bauer, and J. Stangl, Phys. Rev. B 88, 115315 (2013).

    Article  ADS  Google Scholar 

  8. M. Dunaevskiy, P. Geydt, E. Lähderanta, P. Alekseev, T. Haggrén, J. P. Kakko, H. Jiang, and H. Lipsanen, Nano Lett. 17, 3441 (2017).

    Article  ADS  Google Scholar 

  9. F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 3 (2007).

    Article  Google Scholar 

  10. C. B. Maliakkal, M. Gokhale, J. Parmar, R. D. Bapat, B. A. Chalke, S. Ghosh, and A. Bhattacharya, Nanotechnology 30, 254002 (2019).

    Article  ADS  Google Scholar 

  11. X. Ren, H. Huang, V. G. Dubrovskii, N. V. Sibirev, M. V. Nazarenko, A. D. Bolshakov, X. Ye, Q. Wang, Y. Huang, X. Zhang, J. Guo, and X. Liu, Semicond. Sci. Technol. 26, 014034 (2011).

    Article  ADS  Google Scholar 

  12. N. V. Sibirev, M. A. Timofeeva, A. D. Bol’shakov, M. V. Nazarenko, and V. G. Dubrovskii, Phys. Solid State 52, 1531 (2010).

    Article  ADS  Google Scholar 

  13. L. Namazi, L. Gren, M. Nilsson, M. Garbrecht, C. Thelander, R. R. Zamani, and K. A. Dick, Adv. Funct. Mater. 28, 1 (2018).

    Google Scholar 

  14. F. Glas, Phys. Rev. B 74, 2 (2006).

    Article  Google Scholar 

  15. E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, J. Appl. Phys. 97, 1 (2005).

    Article  Google Scholar 

  16. F. Glas and B. Daudin, Phys. Rev. B 86, 1 (2012).

    Article  Google Scholar 

  17. N. V. Sibirev and V. G. Dubrovskii, Tech. Phys. Lett. 30, 79 (2004).

    Article  Google Scholar 

  18. C.-Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992).

    Article  ADS  Google Scholar 

  19. S. Lakel, F. Okbi, M. Ibrir, and K. Almi, AIP Conf. Proc. 1653, 020065 (2015).

    Article  Google Scholar 

  20. T. Akiyama, K. Sano, K. Nakamura, and T. Ito, Jpn. J. Appl. Phys., Part 2 Lett. 45, 275 (2006).

    Google Scholar 

  21. I. Kudman and R. J. Paff, J. Appl. Phys. 43, 3760 (1972).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grants nos. 18-02-01052 and 18-32-00842).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sibirev.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibirev, N.V., Berdnikov, Y.S. & Sibirev, V.N. Impact of Elastic Stress on Crystal Phase of GaP Nanowires. Phys. Solid State 61, 2313–2315 (2019). https://doi.org/10.1134/S1063783419120503

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120503

Keywords:

Navigation