Skip to main content
Log in

A New Method of Growing AlN, GaN, and AlGaN Bulk Crystals Using Hybrid SiC/Si Substrates

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The main principles of a new method of growing bulk single-crystal AlN, AlGaN, and GaN films with thickness from 100 μm and more on silicon substrates with a buffer silicon carbide layer with its subsequent detachment from Si substrates are presented. The main substance of this method is a combination of the method of chloride-hydride epitaxy that determines high growth rates of III nitride layers and the use a Si substrate with a buffer layer of nanoscale SiC film grown by the atomic substitution method as the growth substrate. The Si substrate with a SiC layer grown by the atomic substitution method has a number of structural, physical, and chemical features as compared to SiC layers grown on Si by the standard methods. It is shown that it is precisely this feature that enables the growth on their surfaces of thick crack-free AlN, AlGaN, and GaN layers with subsequent and quite simple their detachment from the substrate. The single-crystal crack-free AlN layers with thickness to 300 μm, AlGaN layers with thickness to 400 μm, GaN layers with thickness to 200 μm, and GaN films of the semipolar (\(11\bar {2}4\)) orientations with thickness to 30 μm have been grown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Ishikawa, G.-Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, Jpn. J. Appl. Phys. 38, L492 (1999).

    Article  Google Scholar 

  2. Sh. Sh. Sharofidinov, A. A. Golovatenko, I. P. Nikitina, N. V. Seredova, M. G. Mynbaeva, V. E. Bugrov, M. A. Odnoblyudov, S. I. Stepanov, and V. I. Nikolaev, Mater. Phys. Mech. 22, 53 (2015).

    Google Scholar 

  3. D. Marcon, Y. N. Saripalli, and S. Decoutere, IEDM Dig. Tech. Papers, No. 16.2.1 (2015).

  4. Sh. Sh. Sharofidinov, A. V. Redkov, A. V. Osipov, and S. A. Kukushkin, J. Phys.: Conf. Ser. 917, 032028 (2017).

    Google Scholar 

  5. S. A. Kukushkin, A. M. Mizerov, A. V. Osipov, A. V. Redkov, and S. N. Timoshnev, Thin Solid Films 646, 158 (2018).

    Article  ADS  Google Scholar 

  6. Y. Taniyasu, M. Kasu, and T. Makimoto, Nature (London, U.K.) 441, 325 (2006).

    Article  ADS  Google Scholar 

  7. M. Kneissl, Zh. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N. M. Johnson, S. Schujman, and L. J. Schowalter, J. Appl. Phys. 101, 123103 (2007).

    Article  ADS  Google Scholar 

  8. M. Amirhoseinya and G. Alahyarizadeh, Vacuum 141, 139 (2017).

    Article  ADS  Google Scholar 

  9. Y. Aoki, M. Kuwabara, Y. Yamashita, Y. Takagi, A. Sugiyama, and H. Yoshida, Appl. Phys. Lett. 107, 151103 (2015).

    Article  ADS  Google Scholar 

  10. Th. Wunderer, Z. Yang, M. Feneberg, M. Batres, M. Teepe, and N. Johnson, Appl. Phys. Lett. 111, 111101 (2017).

    Article  ADS  Google Scholar 

  11. E. N. Mokhov, O. V. Avdeev, I. S. Barash, T. Yu. Chemekov, A. D. Roenkov, A. S. Segal, A. A. Wolfson, Yu. N. Makarov, M. G. Ramm, and H. Helav, J. Cryst. Growth 281, 93 (2005).

    Article  ADS  Google Scholar 

  12. K. Fujito, Sh. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, and S. Nagao, J. Cryst. Growth 311, 30011 (2009).

    Article  Google Scholar 

  13. A. E. F. de Jong, V. Vonkc, M. Ruat, M. Boćkowski, G. Kamler, I. Grzegory, V. Honkimäki, and E. Vlieg, J. Cryst. Growth 448, 70 (2016).

    Article  ADS  Google Scholar 

  14. J. A. Freitas, J. C. Culbertsona, N. A. Mahadika, T. Sochackib, M. Iwinskab, and M. S. Bockowski, J. Cryst. Growth 456, 113 (2016).

    Article  ADS  Google Scholar 

  15. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, RF Patent No. 2363067 (2008).

  16. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 50, 1238 (2008).

    Article  ADS  Google Scholar 

  17. S. A. Kukushkin and A. V. Osipov, Dokl. Phys. 57, 217 (2012).

    Article  ADS  Google Scholar 

  18. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56, 1507 (2014).

    Article  ADS  Google Scholar 

  19. S. A. Kukushkin and A. V. Osipov, J. Phys. D 47, 313001 (2014).

    Article  ADS  Google Scholar 

  20. A. A. Lebedev, Semicond. Sci. Technol. 21, R17 (2006).

    Article  ADS  Google Scholar 

  21. G. Ferro, Solid State Mater. Sci. 40, 56 (2015).

    Google Scholar 

  22. Yu. E. Kitaev, S. A. Kukushkin, A. V. Osipov, and A. V. Redkov, Phys. Solid State 60, 2066 (2018).

    Article  ADS  Google Scholar 

  23. S. A. Kukushkin, A. V. Osipov, and A. V. Red’kov, Semiconductors 51, 396 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Red’kov for assistance in measuring and processing the Raman spectra, I.P. Soshnikov for the assistance in the photography of the SEM images of the sample surface cleavages, and M.P. Shcheglov for the assistance in analyzing the X-ray diffraction spectra.

Funding

This work was supported by the program of the Presidium of the Russian Academy of Sciences “Hanostructures: physics, chemistry, biology, fundamentals of technologies.” Registration No. NIOKTR AAAA-A19-119012490107-5. The experimental studies were performed using the unique scientific installation “Physics, chemistry, and mechanics of crystals and thin films” (Institute of Problems of Mechanical Engineering, Russian Academy of Science, St. Petersburg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, S.A., Sharofidinov, S.S. A New Method of Growing AlN, GaN, and AlGaN Bulk Crystals Using Hybrid SiC/Si Substrates. Phys. Solid State 61, 2342–2347 (2019). https://doi.org/10.1134/S1063783419120254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120254

Keywords:

Navigation