Skip to main content
Log in

High Resolution Investigation on the NiAu Ohmic Contact to p-AlGaN|GaN Heterostructure

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The low-resistance ohmic contact NiAu|p-type AlGaN|GaN was carefully investigated by high resolution electron microscope (HRTEM) and X-ray photoelectron spectroscopy (XPS) after two-step annealing at 550 and 750°C. It is shown that complicate double-direction diffusion and reaction occur in the metal layer and underlying GaN layer. The stacks of Ni|Au|Ni|Au turn into one alloyed layer and an intimate relationship establishes at the NiAu|GaN boundary which should play a primary role in ohmic contact to lower the contact barrier. A great part of Ni is oxidized as dispersive NiO nanoclusters in the metal layer, which might have an effect to hinder Ga atoms migrating upward. So at the intimate interface, the metal layer close to the contact enriched with Ga and Au, and the GaN upper layer metallized by Au and Ni should reduce the lattice mismatch and the contact barrier. Dense vacancies in the upper GaN layer and dislocations connected with the contact boundary also have the effects to improve the current carrier transportation. So the low ohmic contact to p-GaN should be obtained by the combination of these microstructural characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. S. Park, D. W. Fothergill, X. Zhang, J. Zachary, J. F. Muth, and R. F. Davis, Jpn. J. Appl. Phys. 44, 7254 (2005).

    Article  ADS  Google Scholar 

  2. G. Greco, F. Iucolano, and F. Roccaforte, Appl. Surf. Sci. 383, 324 (2016).

    Article  ADS  Google Scholar 

  3. J. K. Ho, C.-S. Jong, C. C. Chiu, C-N. Huang, C‑Y. Chen, and K.-K. Shih, Appl. Phys. Lett. 74, 1275 (1999).

    Article  ADS  Google Scholar 

  4. L. Zhou, W. Lanford, A. T. Ping, I. Adesida, J. W. Yang, and A. Khan, Appl. Phys. Lett. 76, 3451 (2000).

    Article  ADS  Google Scholar 

  5. H. Kim, I. Adesida, and T. Seong, J. Vac. Sci. Technol. A 22, 1101 (2004).

    Article  ADS  Google Scholar 

  6. S. Belahsene, G. Patriarche, D. Troadec, S. Sundaram, A. Ougazzaden, A. Martinez, and A. Ramdane, J. Vac. Sci. Technol. B 33, 010603 (2015).

    Article  Google Scholar 

  7. H. K. Cho, T. Hossain, J. W. Bae, and I. Adesida, Solid State Electron. 49, 774 (2005).

    Article  ADS  Google Scholar 

  8. C. Hu, Z. Qin Feng, Z. Chen, H. Yang, Z. Yang, T. Yu, X. Hu, S. Yao, and G. Zhang, Chin. J. Semicond. 26, 1154 (2005).

    Google Scholar 

  9. X. Bao, J. Xu, C. Li, H. Qiao, Y. Zhang, and X. Li, J. Alloys Compd. 581, 289 (2013).

    Article  Google Scholar 

  10. C. Y. Hu, Z. B. Ding, Z. X. Qin, Z. Z. Chen, K. Xu, Z. J. Yang, B. Shen, S. D. Yao, and G. Y. Zhang, J. Cryst. Growth 298, 808 (2007).

    Article  ADS  Google Scholar 

  11. C. D. Tsai and C. T. Lee, J. Appl. Phys. 87, 4230 (2000).

    Article  ADS  Google Scholar 

  12. P. F. Yan, K. Du, and M. L. Sui, J. Appl. Phys. 112, 083502 (2012).

    Article  ADS  Google Scholar 

  13. L. Wang, M. F. Mohammed, and I. Adesida, Appl. Phys. Lett. 87, 141915 (2005).

    Article  ADS  Google Scholar 

  14. J. Narayan, H. Wang, T.-H. Oh, H. K. Choi, and J. C. Fan, Appl. Phys. Lett. 81, 3978 (2002).

    Article  ADS  Google Scholar 

  15. Z. F. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoč, Appl. Phys. Lett. 68, 1672 (1996).

    Article  ADS  Google Scholar 

  16. A. Baharin, R. S. Pinto, U. K. Mishra, B. D. Nener, and G. Parish, Thin Solid Films 519, 3686 (2011).

    Article  ADS  Google Scholar 

  17. V. R. Reddy, Mater. Chem. Phys. 93, 286 (2005).

    Article  Google Scholar 

  18. J. L. Yang and J. S. Chen, J. Alloys Compd. 419, 312 (2006).

    Article  Google Scholar 

  19. J. Smalc-Koziorowska, S. Grzanka, E. Litwin-Staszewska, R. Piotrzkowski, G. Nowak, M. Leszczynski, P. Perlin, E. Talik, J. Kozubowski, and S. Krukowski, Solid State Electron. 54, 701 (2010).

    Article  ADS  Google Scholar 

  20. C. H. Kuo, J. K. Sheu, G. C. Chi, Y. L. Huang, and T. W. Yeh, Solid State Electron. 45, 717 (2001).

    Article  ADS  Google Scholar 

  21. Y. Kang, X. Li, H. Gong, and R. Jiang, Semicond. Sci. Technol. 18, 607 (2003).

    Article  ADS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the National Nature Science Foundation of China (no. 51971163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Fei Hu.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng-Fei Hu, Li, XY. & Zhang, Y. High Resolution Investigation on the NiAu Ohmic Contact to p-AlGaN|GaN Heterostructure. Phys. Solid State 61, 2295–2301 (2019). https://doi.org/10.1134/S1063783419120151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419120151

Keywords:

Navigation