Skip to main content
Log in

Electrical and interface properties of PdAl/Au metal alloyed ohmic contacts on p-type GaN for high-temperature MEMS devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a PdAl/Au (20/30 nm) metal alloyed scheme was investigated for obtaining low resistance ohmic contacts to Mg-doped p-type GaN. The specific contact resistance (ρSCR) was determined using the circular-transmission-line pattern method between the metal contacts and p-type GaN by current–voltage (I–V) measurements. It is noted that the ρSCR of the as-deposited contact (1.23 × 10−2 Ω cm2) was enhanced upon rapid thermal annealing (RTA) at 600 °C (7.82 × 10−4 Ω cm2) for 1 min under N2 ambient. The effective Schottky barrier heights (SBHs) of the various annealed contacts were determined using the Norde and I–V methods. It is observed that the effective SBHs were dependent upon the RTA conditions. According to the X-ray diffraction and X-ray photoelectron spectroscopy results, the gallide-related phases were formed at the PdAl/Au/p-GaN interface such as Au7Ga2 and Ga3Pd5 upon RTA at 600 °C. These phases were responsible for obtaining low contact resistivity of the PdAl/Au contact. Atomic force microscopy results show that the surface morphology (root-mean-square, RMS) of the contact was reasonably smooth even after RTA at 600 °C with an RMS roughness of 0.714 nm. Observations indicate that the PdAl/Au metal alloyed contact was a suitable ohmic contact to p-type GaN for the development of commercially viable large-scale GaN-based microelectromechanical system applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.R. Zadeh, V.J. Gokhale, A. Ansari, M. Faucher, D. Theron, Y. Cordier, L. Buchaillot, J. Microelectromech. Syst. 23, 1252–1271 (2014)

    Article  Google Scholar 

  2. E. Sillero, D.L. Romero, A. Bengoechea, M.A.S. Garcia, F. Calle, Phys. Stat. Sol. C 5, 1974–1976 (2008)

    Article  Google Scholar 

  3. R. Szweda, Gallium Nitride and Related Wide Band Gap Materials and Devices, 2nd edn. (Elsevier Science, New York, 2000)

    Google Scholar 

  4. M.S.P. Reddy, B.-J. Kim, J.-S. Jang, Opt. Express 22, 908–915 (2014)

    Article  Google Scholar 

  5. M.S.P. Reddy, H. Park, S.-M. Kim, S.-H. Jang, J.-S. Jang, J. Mater. Chem. C 3, 8873–8880 (2015)

    Article  Google Scholar 

  6. M.S.P. Reddy, P.T. Puneetha, Y.-W. Lee, S.-H. Jeong, C. Park, Polym. Test 59, 107–112 (2017)

    Article  Google Scholar 

  7. V. Cimalla, J. Pezoldt, O. Ambacher, J. Phys. D 40, 6389–6434 (2007)

    Article  Google Scholar 

  8. S. Davies, T.S. Huang, M.H. Gass, A.J. Papworth, T.B. Joyce, P.R. Chalker, Appl. Phys. Lett. 84, 2566–2568 (2004)

    Article  Google Scholar 

  9. Z. Yang, R.N. Wang, S. Jia, D. Wang, B. Zhang, K.M. Lau, K.J. Chen, Appl. Phys. Lett. 88, 041913 (2006)

    Article  Google Scholar 

  10. S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, Mater. Sci. Eng. R30, 55–212 (2000)

    Article  Google Scholar 

  11. H.-S. Kang, M.S.P. Reddy, D.-S. Kim, K.-W. Kim, J.-B. Ha, Y.-S. Lee, H.-C. Choi, J.-H. Lee, J. Phys. D 46, 155101 (2013)

    Article  Google Scholar 

  12. J.-S. Jang, S.-J. Park, T.-Y. Seong, J. Appl. Phys. 88, 5490–5492 (2000)

    Article  Google Scholar 

  13. J.-S. Jang, T.-Y. Seong, Appl. Phys. Lett. 76, 2743–2745 (2000)

    Article  Google Scholar 

  14. G. Greco, F. Iucolano, F. Roccaforte, Appl. Surf. Sci. 383, 324–345 (2016)

    Article  Google Scholar 

  15. V. Rajagopal Reddy, S.-H. Kim, J.-O. Song, T.-Y. Seong, Solid-State Electron 48, 1563–1568 (2004)

    Article  Google Scholar 

  16. H.-W. Jang, C.-M. Jeon, J.-L. Lee, Phys. Stat. Sol. C 0, 227–230 (2002)

    Article  Google Scholar 

  17. J.K. Ho, C.S. Jong, C.C. Chiu, C.N. Huang, K.K. Shih, L.C. Chen, F.R. Chen, J.J. Kai, J. Appl. Phys. Lett. 86, 4491–4497 (1999)

    Google Scholar 

  18. H.K. Cho, T. Hossain, J.W. Bae, I. Adesida, Solid-State Electron 49, 774–778 (2005)

    Article  Google Scholar 

  19. L.F. Voss, L. Stafford, R. Khanna, B.P. Gila, C.R. Abernathy, S.J. Pearton, F. Ren, I.I. Kravchenko, Appl. Phys. Lett. 90, 212107 (2007)

    Article  Google Scholar 

  20. T. Han, T. Wang, X.W. GaN, H. Wu, Y. Shi, J. C. Liu, Korean. Phys. Soc. 65, 62–65 (2014)

    Article  Google Scholar 

  21. S. Belahsene, G. Patriarche, D. Troadec, S. Sundaram, A. Ougazzden, A. Martinez, A. Ramdane, J. Vac. Sci. Technol. B 33, 010603 (2015)

    Article  Google Scholar 

  22. M. Oh, W.-Y. Jin, H.-J. Jeong, M.-S. Jeong, J.-W. Kang, H. Kim, Sci. Rep. 5, 13483 (2015)

    Article  Google Scholar 

  23. S. Zhao, H. Mcfavilen, S. Wang, F.A. Ponce, C. Arena, S. Goodnick, S. Chowdhury, J. Electron. Mater. 45, 2087–2091 (2016)

    Article  Google Scholar 

  24. C.A.H. Gutierrez, Y. Kudriavtsev, E. Mota, A.G. Hernandez, A.E. Echavarria, V.S. Resendiz, Y.L.C. Moreno, M.L. Lopez, Nucl. Instrum. Methods Phys. Res. B 388, 35–40 (2016)

    Article  Google Scholar 

  25. D. Qiao, L.S. Yu, S.S. Lau, J.Y. Lin, H.X. Jiang, T.E. Haynes, J. Appl. Phys. 88, 4196–4200 (2000)

    Article  Google Scholar 

  26. J.K. Kim, J.H. Je, J.L. Lee, Y.J. Park, B.T. Lee, J. Electrochem. Soc. 147, 4645–4651 (2000)

    Article  Google Scholar 

  27. J.-K. Kim, J.-L. Lee, J.-W. Lee, H.-E. Shin, Y.-J. Park, T. Kim, Appl. Phys. Lett. 73, 2953–2955 (1998)

    Article  Google Scholar 

  28. L.-C. Chen, F.R. Chen, J.J. Kai, L. Chang, J.K. Ho, C.-S. Jong, C.C. Chiu, C.-N. Huang, C.-Y. Chen, K.-K. Shih, J. Appl. Phys. 86, 3826–3832 (1999)

    Article  Google Scholar 

  29. T.S. Huang, J.G. Pang, J. Appl. Phys. 78, 5739–5744 (1995)

    Article  Google Scholar 

  30. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected values of the thermodynamic properties of binary alloys (ASM, Materials Park, OH, 1973)

    Google Scholar 

  31. V. Rajagopal Reddy, Mater. Chem. Phys. 93, 286–290 (2005)

    Article  Google Scholar 

  32. H. Norde, J. Appl. Phys. 50, 5052–5053 (1979)

    Article  Google Scholar 

  33. T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N. Shibata, M. Koike, Appl. Phys. Lett. 69, 3537–3539 (1996)

    Article  Google Scholar 

  34. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts. (Clarendon, Oxford, 1988)

    Google Scholar 

  35. J. Sun, K.A. Rickert, J.M. Redwing, A.B. Ellis, F.J. Himpsel, T.F. Kuech, Appl. Phys. Lett. 76, 415–417 (2000)

    Article  Google Scholar 

  36. V. Rajagopal Reddy, N.R. Reddy, C.-J. Choi, Solid-State Electron 49, 1213–1216 (2005)

    Article  Google Scholar 

  37. J.-S. Jang, S.-J. Park, T.-Y. Seong, Appl. Phys. Lett. 76, 2898–2900 (2000)

    Article  Google Scholar 

  38. V. Rajagopal Reddy, S.-H. Kim, J.-O. Song, T.-Y. Seong, Semicond. Sci. Technol. 18, 541–544 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported partially by the Energy technology development program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) which is funded by the Ministry of Trade, Industry and Energy, Republic of Korea (No. 20153010130320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajagopal Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puneetha, P.T., Reddy, M.S.P., Lee, YW. et al. Electrical and interface properties of PdAl/Au metal alloyed ohmic contacts on p-type GaN for high-temperature MEMS devices. J Mater Sci: Mater Electron 28, 16903–16909 (2017). https://doi.org/10.1007/s10854-017-7609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7609-8

Navigation