Skip to main content
Log in

High-Temperature Phase Transitions in ZrO2

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An analysis of primary literature sources shows that there is only one reliable report on the observation of the cubic ZrO2 phase by the X-ray method under oxidizing conditions. This phase is observed at temperatures not lower than 2500°C. All other reports on the observation of a phase transition around 2300°C are reliable only in relation to the existence of a transition at this temperature, but this transition is to the t' tetragonal phase rather than to the cubic one. The conclusion is that the following four polymorphic modifications are present in ZrO2 under the standard pressure: monoclinic (m), two tetragonal (t and t'), and cubic (c) phases that are converted into each other with an increase in the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008).

    Article  Google Scholar 

  2. M. Yashima, M. Kakihana, and M. Yoshimura, Solid State Ionics 86–88, 1131 (1996).

    Article  Google Scholar 

  3. T. Liu, X. Zhang, X. Wang, J. Yu, and L. Li, Ionics 22, 2249 (2016).

    Article  Google Scholar 

  4. T. Noguchi, T. Okubo, and O. Yonemochi, J. Am. Ceram. Soc. 52, 178 (1969).

    Article  Google Scholar 

  5. V. P. Gorelov, Tr. Inst. Elektrokhim. UNTs ANSSSR 26, 69 (1978).

    Google Scholar 

  6. State Diagrams of Refractory Oxide Systems: A Handbook, No. 5: Binary systems, Ed. by F. Ya. Galakhov (Nauka, Leningrad, 1985), Part 1 [in Russian].

  7. D. K. Smith and C. F. Cline, J. Am. Ceram. Soc. 45, 249 (1962).

    Article  Google Scholar 

  8. G. M. Wolten, J. Am. Ceram. Soc. 46, 418 (1963).

    Article  Google Scholar 

  9. A. G. Boganov, V. S. Rudenko, and L. P. Makarov, Dokl. Akad. Nauk SSSR 160, 1065 (1965).

    Google Scholar 

  10. J. Hubert, Rev. Int. Hautes. Temper. Refract. 11, 253 (1974).

    Google Scholar 

  11. V. S. Stubican and S. P. Ray, J. Am. Ceram. Soc. 60, 534 (1977).

    Article  Google Scholar 

  12. P. Aldebert and J. P. Traverse, J. Am. Ceram. Soc. 68, 34 (1985).

    Article  Google Scholar 

  13. C. Ruff and F. Ebert, Z. Anorg. Allgem. Chem. 180, 19 (1929).

    Google Scholar 

  14. T. H. Etsell and S. N. Flengas, Chem. Rev. 70, 339 (1970).

    Article  Google Scholar 

  15. P. S. Duwez, F. N. Brown, and F. Odell, J. Electrochem. Soc. 98, 356 (1951).

    Article  Google Scholar 

  16. J. Lefevre, Ann. Chim. 8, 117 (1963).

    Google Scholar 

  17. R. Ruh, H. J. Garrett, R. F. Domagala, and V. A. Patel, J. Am. Ceram. Soc. 60, 399 (1977).

    Article  Google Scholar 

  18. J. A. Krogstad, S. Kramer, D. M. Lipkin, C. A. Johnson, D. R. G. Mitchell, J. M. Cairney, and C. G. Levi, J. Am. Ceram. Soc. 94, S168 (2011).

    Article  Google Scholar 

  19. I. V. Mazilin, L. Kh. Baldaev, D. V. Drobot, E. Yu. Mar-chukov, and N. G. Zaitsev, Inorg. Mater. 52, 802 (2016).

    Article  Google Scholar 

  20. S. V. Ushakov and A. Navrotsky, J. Am. Ceram. Soc. 95, 1463 (2012).

    Article  Google Scholar 

  21. T. Noguchi, M. Mizuno, and T. Yamada, Bull. Chem. Soc. Jpn. 43, 2614 (1970).

    Article  Google Scholar 

  22. A. Rouanet, C.R. Acad. Sci. Paris C 267, 1581 (1968).

    Google Scholar 

  23. K. K. Srivastava, R. N. Patil, C. B. Choudhary, K. V. G. K. Gokhale, and E. C. Subbarao, Trans. J. Brit. Ceram. Soc. 73, 85 (1974).

    Google Scholar 

  24. H. G. Scott, J. Mater. Sci. 10, 1527 (1975).

    Article  ADS  Google Scholar 

  25. S. A. Ghyngazov, I. P. Vasil’ev, A. P. Surzhikov, T. S. Frangulyan, and A. V. Chernyavskii, Tech. Phys. 60, 128 (2015).

    Article  Google Scholar 

  26. A. Revcolevschi, Rev. Int. Hautes Temp. Refract. 7, 73 (1970).

    Google Scholar 

  27. R. A. Evarestov and Yu. E. Kitaev, J. Appl. Cryst. 49, 1572 (2016).

    Article  Google Scholar 

  28. Y. Suzuki, Solid State Ionics 81, 211 (1995).

    Article  Google Scholar 

  29. V. P. Gorelov, in Proceedings of the International Conference on Intellectual Technologies in Power Engineering (Physical Chemistry and Electrochemistry of Molten and Solid Electrolytes) (Azhur, Yekaterinburg, 2017), p. 190.

  30. O. A. Graeve, in Ceramic and Glass Materials: Structure, Properties and Processing (Springer, New York, 2008), p. 169.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.V. Kuz’min and V.B. Balakireva for their valuable comments and assistance in this study.

Funding

This work was partly supported by the Russian Foundation for Basic Research (grant no. 17-08-01227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Gorelov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelov, V.P. High-Temperature Phase Transitions in ZrO2. Phys. Solid State 61, 1288–1293 (2019). https://doi.org/10.1134/S1063783419070096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419070096

Navigation