Skip to main content
Log in

Formation of Nanocrystals in an Amorphous Phase of Multicomponent Systems

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of the concentration of alloying components on the crystallization of amorphous (Fe73Si13B9)1 – x  yNbxCuy and (Co70Si12B9)1 – x  yFexNby alloys has been studied by X-ray diffraction and transmission electron microscopy in a wide composition region. The formation of the bcc structures in both the alloy groups is shown to be substantially dependent on the alloying component concentrations. The bcc phase is found to form in the cobalt-based alloys in the concentration region, where it was not observed before. In the cobalt-based alloys, the bcc phase appears at a niobium concentration higher than 1 at % and the average bcc nanocrystal size varies from 40 nm (at 1 at % Nb) to 14 nm (at 5 at % Nb). In the Fe-based alloys, nanocrystals with the bcc lattice form at the copper concentrations of 0.45–1 at %, and the average nanocrystal size is dependent on the alloy composition and varies in the range 16–24 nm. The causes of the concentration dependence of the formation of nanostructures in these alloys are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. V. Louzguine and A Inoue, J. Non-Cryst. Solids 352, 3903 (2006).

    Article  ADS  Google Scholar 

  2. G. E. Abrosimova, A. S. Aronin, S. V. Dobatkin, I. I. Zverkova, D. V. Matveev, O. G. Rybchenko, and E. V. Tatyanin, Phys. Solid State 49, 1034 (2007).

    Article  ADS  Google Scholar 

  3. Zs. Kovács, P. Henits, S. Hobor, and A. Révész, Rev. Adv. Mater. Sci. 18, 593 (2008).

    Google Scholar 

  4. P. Henits, Zs. Kovács, and A. Révész, Rev. Adv. Mater. Sci. 18, 597 (2008).

    Google Scholar 

  5. S. Hobor, A. Revesz, A. P. Zhilyaev, and Zs. Kovács, Rev. Adv. Mater. Sci. 18, 590 (2008).

    Google Scholar 

  6. G. E. Abrosimova and A. S. Aronin, Phys. Solid State 51, 1765 (2009).

    Article  ADS  Google Scholar 

  7. G. Abrosimova, A. Aronin, O. Barkalov, D. Matveev, O. Rybchenko, V. Maslov, and V. Tkach, Phys. Solid State 53, 229 (2011).

    Article  ADS  Google Scholar 

  8. V. I. Tkach, S. G. Rassolov, V. V. Popov, and V. V. Maksimov, J. Non-Cryst. Solids 357, 1628 (2011).

    Article  ADS  Google Scholar 

  9. A. N. Petrova, I. G. Brodova, O. A. Plekhov, O. B. Nai-mark, and E. V. Shorokov, Tech. Phys. 59, 989 (2014).

    Article  Google Scholar 

  10. E. Pershina, G. Abrosimova, A. Aronin, and D. Matveev, Mater. Lett. 134, 60 (2014).

    Article  Google Scholar 

  11. D. V. Louzguine-Luzgin, A. I. Bazlov, S. V. Ketov, and A. Inoue, Mater. Chem. Phys. 162, 197 (2015).

    Article  Google Scholar 

  12. G. Abrosimova, D. Matveev, E. Pershina, and A. Aronin, Mater. Lett. 183, 131 (2016).

    Article  Google Scholar 

  13. G. Abrosimova, Phys. Usp. 54, 1227 (2011).

    Article  ADS  Google Scholar 

  14. A. S. Aronin, G. E. Abrosimova, I. I. Zver’kova, D. Lang, and R. Luck, J. Non-Cryst. Solids 208, 139 (1996).

    Article  ADS  Google Scholar 

  15. S. Spriano, C. Antonione, R. Doglione, L. Battezzati, S. Cardoso, J. C. Soares, and M. F. da Silva, Philos. Mag. B 76, 529 (1997).

    Article  ADS  Google Scholar 

  16. U. Köster, J. Meinhardt, S. Roos, and H. Liebertz, Appl. Phys. Lett. 69, 179 (1996).

    Article  ADS  Google Scholar 

  17. L. Q. Xing, J. Eckert, W. Löser, and L. Schultz, Appl. Phys. Lett. 74, 664 (1999).

    Article  ADS  Google Scholar 

  18. C. F. Li, Appl. Phys. Lett. 77, 528 (2000).

    Article  ADS  Google Scholar 

  19. V. Chunchu and G. Markandeyulu, J. Appl. Phys. 113, 17A321 (2013).

  20. R. Xiang, Sh. Zhou, B. Dong, G. Zhang, Z. Li, Y. Wang, and Ch. Chang, Progr. Nat. Sci. Mater. Int. 24, 649 (2014).

    Article  Google Scholar 

  21. V. Cremaschi, B. Arcondo, H. Sirkin, M. Vazquez, A. Asenjo, J. M. Garcia, G. Abrosimova, and A. Aronin, J. Mater. Res. 15, 1936 (2000).

    Article  ADS  Google Scholar 

  22. C. F. Conde, J. S. Blazquez, and A. Conde, in Properties and Application of Nanocrystalline Alloys from Amorphous Precursor, Ed. by B. Idzikowski (Kluwer Academic, Netherlands, 2005), p. 111.

    Google Scholar 

  23. R. Nowosielski, A. Zajdel, S. Lesz, B. Kostrubiec, and Z. Stoklosa, Arch. Mater. Sci. Eng. 28, 141 (2007).

    Google Scholar 

  24. M. Ohta and Y. Yoshizawa, Appl. Phys. Lett. 91, 062517 (2007).

    Article  ADS  Google Scholar 

  25. D. V. Louzguine-Luzgin, A. I. Bazlov, S. V. Ketov, and A. Inoue, Mater. Chem. Phys. 162, 197 (2015).

    Article  Google Scholar 

  26. A. A. Rusakov, X-Ray Diffraction of Metals (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  27. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).

    Article  ADS  Google Scholar 

  28. M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci. 44, 291 (1999).

    Article  Google Scholar 

  29. T. Gheiratmand, H. R. Madaah Hosseini, P. Davami, M. Gjoka, G. Loizos, and H. Aashuri, J. Alloys Compd. 282, 79 (2014).

    Article  Google Scholar 

  30. A. S. Hossein, M. Samadi, H. Alihosseini, and H. R. Madaah Hosseini, Thermochim. Acta 575, 64 (2014).

    Article  Google Scholar 

  31. N. Bayri, T. Izgi, H. Gencer, P. Sovak, M. Gunes, and S. Atalay, J. Non-Cryst. Solids 355, 12 (2009).

    Article  ADS  Google Scholar 

  32. J. Balcerski, R. Brzozowski, M. Wasiak, K. Polanski, and M. Moneta, Vacuum 83 (Suppl. 1), S182 (2009).

    Article  ADS  Google Scholar 

  33. Y. Yoshizawa, S. Fujii, D. H. Ping, M. Ohnuma, and K. Hono, Scr. Mater. 48, 863 (2003).

    Article  Google Scholar 

  34. P. Agudo and M. Vazquez, J. Appl. Phys. 97, 023901 (2005).

    Article  ADS  Google Scholar 

  35. Y. Yoshizawa and K. Yamauchi, Mater. Sci. Eng. A 133, 176 (1991).

    Article  Google Scholar 

  36. M. Yan, H. Tong, S. Tao, and J. Liu, J. Alloys Compd. 505, 264 (2010).

    Article  Google Scholar 

  37. W. Lu, J. Fan, Y. Wang, and B. Yan, J. Magn. Magn. Mater. 322, 2935 (2010).

    Article  ADS  Google Scholar 

  38. N. Chau, N. Q. Hoa, N. D. The, and L. V. Vu, J. Magn. Magn. Mater. 303, e415 (2006).

    Article  ADS  Google Scholar 

  39. D. Muraca, V. Cremaschi, J. Moya, and H. Sirkin, J. Magn. Magn. Mater. 320, 1639 (2008).

    Article  ADS  Google Scholar 

  40. P. R. Elliot, Constitution of Binary Alloys (McGraw-Hill, New York, 1970), First Suppl.

  41. G. E. Abrosimova, A. S. Aronin, V. E. Asadchikov, and A. V. Serebryakov, Fiz. Met. Metalloved. 62, 496 (1986).

    Google Scholar 

  42. D. V. Louzguine, H. Kato, H. S. Kim, and A. Inoue, J. Alloys Compd. 359, 198 (2003).

    Article  Google Scholar 

Download references

Funding

This work was performed in the framework of the state task to the Institute of Solid State Physics of the Russian Academy of Sciences and partially supported by the Russian Foundation for Basic Research (project no. 19-02-00406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Abrosimova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrosimova, G.E., Aronin, A.S. & Volkov, N.A. Formation of Nanocrystals in an Amorphous Phase of Multicomponent Systems. Phys. Solid State 61, 1294–1299 (2019). https://doi.org/10.1134/S1063783419070023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419070023

Navigation