Skip to main content
Log in

Study of Properties of Gold–Iron Alloy in the Macro- and Nanocrystalline States under Different PT Conditions

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Parameters of the Mie–Lennard-Jones pair interatomic potential for a disordered substitutional fcc-Au–Fe alloy are determined. The concentration dependences of the lattice properties of a macrocrystal of this alloy are calculated based on these parameters. The results of calculating twenty properties of fcc-Au, fcc-Fe, and fcc-Au0.5Fe0.5 macrocrystals showed good consistency with the experimental data. The equation of state P(ν, T; N) and baric dependences of both the lattice and surface properties of the fcc-Au0.5Fe0.5 alloy are calculated using the RP nanocrystal model. The calculations have been performed at temperatures T = 100, 300, and 500 K for both the macrocrystal (N = ∞) and the cubic nanocrystal consisting of N = 306 atoms. It is shown that, during isothermal–isobaric (P = 0) decrease in the nanocrystal size, its Debye temperature, elastic modulus, and specific surface energy decrease, while its specific volume, coefficient of thermal expansion, specific heat, and Poisson ratio increase. At low temperatures, the specific surface energy increases in a certain range of pressures with an isothermal–isobaric decrease in the number of atoms in the nanocrystal. This range of pressures disappears with an increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. M. Saoudi, H. Fritzsche, G. J. Nieuwenhuys, and M. B. S. Hesselberth, Phys. Rev. Lett. 100, 057204 (2008). https://doi.org/10.1103/PhysRevLett.100.057204

    Article  ADS  Google Scholar 

  2. Q. Zhang, P. Li, Y. Wen, C. Zhao, J. W. Zhang, A. Manchon, W. B. Mi, Y. Peng, and X. X. Zhang, Phys. Rev. B 94, 024428 (2016). https://doi.org/10.1103/physrevb.94.024428

    Article  ADS  Google Scholar 

  3. H. Fuse, N. Koshizaki, Y. Ishikawa, and Z. Swiatkowska-Warkocka, Nanomaterials 9, 198 (2019). https://doi.org/10.3390/nano9020198

    Article  Google Scholar 

  4. Y. N. Wu, D. B. Shieh, L. X. Yang, H. S. Sheu, R. Zheng, P. Thordarson, D. H. Chen, and F. Braet, Materials 11, 2572 (2018). https://doi.org/10.3390/ma11122572

    Article  ADS  Google Scholar 

  5. H. Okamoto, T. B. Massalski, L. J. Swartzendruber, and P. A. Beck, Bull. Alloys Phase Diagr. 5, 592 (1984). https://doi.org/10.1007/BF02868322

    Article  Google Scholar 

  6. J. A. Munoz, M. S. Lucas, L. Mauger, I. Halevy, J. Horwath, S. L. Semiatin, Y. Xiao, P. Chow, M. B. Stone, D. L. Abernathy, and B. Fultz, Phys. Rev. B 87, 014301 (2013). https://doi.org/10.1103/PhysRevB.87.014301

    Article  ADS  Google Scholar 

  7. J. Kangsabanik, R. K. Chouhan, D. D. Johnson, and A. Alam, Phys. Rev. B 96, 100201 (2017). https://doi.org/10.1103/PhysRevB.96.100201

    Article  ADS  Google Scholar 

  8. F. Calvo, N. Combe, J. Morillo, and M. Benoit, J. Phys. Chem. C 121, 4680 (2017). https://doi.org/10.1021/acs.jpcc.6b12551

    Article  Google Scholar 

  9. C. Srivastava, S. Chithra, K. D. Malviya, S. K. Sinha, and K. Chattopadhyay, Acta Mater. 59, 6501 (2011). https://doi.org/10.1016/j.Actamat.2011.07.022

    Article  ADS  Google Scholar 

  10. A. Tymoczko, M. Kamp, O. Prymak, C. Rehbock, J. Jakobi, U. Schürmann, L. Kienle, and S. Barcikowski, Nanoscale 10, 16434 (2018). https://doi.org/10.1039/c8nr03962c

    Article  Google Scholar 

  11. M. N. Magomedov. Crystallogr. Rep. 62, 480 (2017). https://doi.org/10.1134/S1063774517030142

    Article  ADS  Google Scholar 

  12. M. N. Magomedov, Nanotechnol. Russ. 14, 21 (2019). https://doi.org/10.1134/S1995078019010063

    Article  Google Scholar 

  13. M. N. Magomedov, Phys. Solid State 60, 981 (2018). https://doi.org/10.1134/S1063783418050190

    Article  ADS  Google Scholar 

  14. M. N. Magomedov, Phys. Solid State 45, 32 (2003). https://doi.org/10.1134/1.1537405

    Article  ADS  Google Scholar 

  15. L. A. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973).

    Google Scholar 

  16. E. F. Pichugin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 77 (1962) [in Russian].

  17. M. N. Magomedov, High Temp. 44, 513 (2006). https://doi.org/10.1007/s10740-006-0064-5

    Article  Google Scholar 

  18. M. N. Magomedov, Phys. Solid State 62, 1126 (2020). https://doi.org/10.1134/S1063783420070136

    Article  ADS  Google Scholar 

  19. M. N. Magomedov, Phys. Solid State 61, 2145 (2019). https://doi.org/10.1134/S1063783419110210

    Article  ADS  Google Scholar 

  20. A. Karbasi, S. K. Saxena, and R. Hrubiak, CALPHAD 35, 72 (2011). https://doi.org/10.1016/j.calphad.2010.1.007

    Article  Google Scholar 

  21. Y. Nishihara, Y. Nakajima, A. Akashi, N. Tsujino, E. Takahashi, K. I. Funakoshi, and Y. Higo, Am. Mineralog. 97, 1417 (2012). https://doi.org/10.2138/am.2012.3958

  22. M. N. Magomedov, Tech. Phys. 62, 569 (2017). https://doi.org/10.1134/S1063784217040156

    Article  Google Scholar 

  23. P. I. Dorogokupets, A. M. Dymshits, K. D. Litasov, and T. S. Sokolova, Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/srep41863

    Article  Google Scholar 

  24. M. N. Magomedov, J. Surf. Invest. X-ray, Synchrotr. Neutron Tech. 12, 185 (2018). https://doi.org/10.1134/S1027451018010299

    Article  Google Scholar 

  25. M. G. Pamato, I. G. Wood, D. P. Dobson, S. A. Hunt, and L. Vočadlo, J. Appl. Crystallogr. 51, 470 (2018). https://doi.org/10.1107/S1600576718002248

    Article  Google Scholar 

  26. V. K. Kumikov and Kh. B. Khokonov, J. Appl. Phys. 54, 1346 (1983). https://doi.org/10.1063/1.332209

    Article  ADS  Google Scholar 

  27. Q. Jiang, H. M. Lu, and M. Zhao, J. Phys.: Condens. Matter 16, 521 (2004). https://doi.org/10.1088/0953-8984/16/4/001

    Article  ADS  Google Scholar 

  28. A. I. Funtikov, High Temp. 41, 850 (2003). https://doi.org/10.1023/B:HITE.0000008344.89730.69

    Article  Google Scholar 

  29. H. Chamati, N. I. Papanicolaou, Y. Mishin, and D. A. Papaconstantopouaolos, Surf. Sci. 600, 1793 (2006).https://doi.org/10.1016/j.susc.2006.02.010

  30. A. I. Karasevskii and V. V. Lubashenko, Low Temp. Phys. 35, 275 (2009). https://doi.org/10.1063/1.3114592

    Article  ADS  Google Scholar 

  31. V. R. Selva, S. R. Kulkarni, S. K. Saxena, H.-P. Liermann, and S. V. Sinogeikin, Appl. Phys. Lett. 89, 261901 (2006). https://doi.org/10.1063/1.2422886

    Article  ADS  Google Scholar 

  32. R. Cherian, C. Gerard, P. Mahadevan, N. T. Cuong, and R. Maezono, Phys. Rev. B 82, 235321 (2010). https://doi.org/10.1103/PhysRevB.82.235321

    Article  ADS  Google Scholar 

  33. M. Popov, V. Churkin, D. Ovsyannikov, A. Khabibrakhmanov, A. Kirichenko, E. Skryleva, Y. Parkhomenko, M. Kuznetsov, S. Nosukhin, P. Sorokin, S. Terentiev, and V. Blank, Diamond Rel. Mater. 96, 52 (2019). https://doi.org/10.1016/j.diamond.2019.04.033

    Article  ADS  Google Scholar 

  34. M. Mohr, A. Caron, P. Herbeck-Engel, R. Bennewitz, P. Gluche, K. Brühne, and H.-J. Fecht, J. Appl. Phys. 116, 124308 (2014). https://doi.org/10.1063/1.4896729

    Article  ADS  Google Scholar 

  35. M. N. Magomedov, Tech. Phys. Lett. 39, 409 (2013). https://doi.org/10.1134/S1063785013050076

    Article  ADS  Google Scholar 

  36. L. Liang, M. Li, F. Qin, and Y. Wei, Philos. Mag. 93, 574 (2013). https://doi.org/10.1080/14786435.2012.725950

    Article  ADS  Google Scholar 

  37. N. V. Galanis, I. N. Remediakis, and G. Kopidakis, Mech. Mater. 67, 79 (2013). https://doi.org/10.1016/j.mechmat.2013.07.019

    Article  Google Scholar 

  38. C. J. Bhatt and K. Kholiya, Indian J. Pure Appl. Phys. 52, 604 (2014). http://nopr.niscair.res.in/handle/123456789/29354

    Google Scholar 

  39. A. E. Galashev, V. A. Polukhin, I. A. Izmodenov, and O. A. Galasheva, Poverkhnost’, No. 10, 60 (2007) [in Russian].

  40. B. J. Abdullah, M. S. Omar, and Q. Jiang, Sādhanā 43, 174 (2018). https://doi.org/10.1007/s12046-018-0956-1

    Article  Google Scholar 

  41. T. Y. Kim, J. E. Dolbow, and E. Fried, Int. J. Solids Struct. 49, 3942 (2012). https://doi.org/10.1016/j.ijsolstr.2012.08.023

    Article  Google Scholar 

  42. M. N. Magomedov, Phys. Solid State 61, 160 (2019). https://doi.org/10.1134/S1063783419010165

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to S.P. Kramynin, N.Sh. Gazanova, and Z.M. Surkhaeva for fruitful discussions and help in carrying out the study.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-11013_mk) and Program no. 6 of the Presidium of the Russian Academy of Sciences (grant 2-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Magomedov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, M.N. Study of Properties of Gold–Iron Alloy in the Macro- and Nanocrystalline States under Different PT Conditions. Phys. Solid State 62, 2280–2292 (2020). https://doi.org/10.1134/S1063783420120197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420120197

Keywords:

Navigation