Skip to main content
Log in

Study of the Physical Properties and Electrocaloric Effect in the BaTiO3 Nano- and Microceramics

  • FERROELECTRICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The specific heat, thermal expansion, permittivity, and electrocaloric effect in bulk of BaTiO3 (BT) samples in the form of nano- (nBT-500 nm) and micro- (mBT-1200 nm) ceramics fabricated using spark plasma sintering and solid-state plasma techniques have been investigated. The size effect has been reflected, to a great extent, in the suppression of the specific heat and thermal expansion anomalies and in the changes in the temperatures and entropies of phase transitions and permittivity, and a decrease in the maximum intensive electrocaloric effect: \(\Delta T_{{{\text{AD}}}}^{{\max }}\) = 29 mK (E = 2.0 kV/cm) for nBT and \(\Delta T_{{{\text{AD}}}}^{{\max }}\) = 70 mK (E = 2.5 kV/cm) for mBT. The conductivity growth at temperatures above 360 K leads to the significant irreversible heating of the samples due to the Joule heat release in the applied electric field, which dominates over the electrocaloric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Y. Liu, J. F. Scott, and B. Dkhil, Appl, Phys. Rev. 3, 031102 (2016).

    Article  Google Scholar 

  2. Y. Liu, J. F. Scott, and B. Dkhil, Appl. Mater. 4, 064109 (2016).

    Article  ADS  Google Scholar 

  3. H. Khassaf, T. Patel, and P. Alpay, J. Appl. Phys. 121, 144102 (2017).

    Article  ADS  Google Scholar 

  4. Y. V. Sinyavski, G. E. Lugansky, and N. D. Pashov, Cryogenics 32, 28 (1992).

    Article  ADS  Google Scholar 

  5. S. G. Lu, B. Rožič, Q. M. Zhang, Z. Kutnjak, R. Pirc, and M. Lin, Appl. Phys. Lett. 97, 2291 (2010).

    Google Scholar 

  6. X. Hao, Z. Yue, J. Xu, S. An, and C.-W. Nan, J. Appl. Phys. 110, 064109 (2011).

    Article  ADS  Google Scholar 

  7. D. Saranaya, A. R. Chaudhuri, J. Parui, and S. B. Krupanidhi, Bull. Mater. Sci. 32, 259 (2009).

    Article  Google Scholar 

  8. A. S. Mischenko, Q. M. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science (Washington, DC, U. S.) 311, 1270 (2006).

    Article  ADS  Google Scholar 

  9. S. Kar-Narayan and N. D. Mathur, J. Phys. D 43, 032002 (2010).

    Article  ADS  Google Scholar 

  10. N. A. S. Smith, M. K. Rokosz, and T. M. Correia, J. Appl. Phys. 116, 044511 (2014).

    Article  ADS  Google Scholar 

  11. X. Moya, E. Stern-Taulats, S. Crossley, D. Gonzolez-Alonso, S. Kar-Narayan, A. Planes, L. Manosa, and N. D. Mathur, Adv. Mater. 25, 1360 (2013).

    Article  Google Scholar 

  12. M. Valant, A.-K. Axelsson, F. Goupil, and N. M. Alford, Mater. Chem. Phys. 136, 277 (2012).

    Article  Google Scholar 

  13. D.-H. Kim, W.-S. Um, and H.-G. Kim, J. Mater. Res. 11, 2002 (1996).

    Article  ADS  Google Scholar 

  14. T. Tunkasiri and G. Rujijanagul, J. Mater. Sci. Lett. 15, 1767 (1996).

    Article  Google Scholar 

  15. C. Neusel and G. A. Schneider, J. Mech. Phys. Solids 63, 201 (2014).

    Article  ADS  Google Scholar 

  16. Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Joknsson, and P. Nanni, Phys. Rev. B 70, 024107 (2004).

    Article  ADS  Google Scholar 

  17. S. Lin, T. Lu, C. Jin, and X. Wang, Phys. Rev. B 74, 134115 (2006).

    Article  ADS  Google Scholar 

  18. B. A. Strukov, S. T. Davitadze, S. N. Kravchun, S. A. Taraskin, M. Golyzman, V. V. Lemanov, and S. G. Shulman, J. Phys.: Condens. Matter 15, 4331 (2003).

    ADS  Google Scholar 

  19. Z. Valdez-Nava, S. Guillemet-Fritsch, C. Tenailleau, T. Lebey, B. Durand, and J. Y. Chane-Ching, J. Electroceram. 22, 238 (2009).

    Article  Google Scholar 

  20. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data, User’s Manual (2008).

    Google Scholar 

  21. G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, J. Phys. Chem. 97, 2368 (1993).

    Article  Google Scholar 

  22. A. V. Kartashev, I. N. Flerov, N. V. Volkov, and K. A. Sablina, Phys. Solid State 50, 2115 (2008).

    Article  ADS  Google Scholar 

  23. C. Voisin, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, H. Han, and J. C. Nino, Int. J. Appl. Ceram. Technol. 10, E122 (2013).

    Article  Google Scholar 

  24. H. Han, C. Voisin, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, C. Turner, and J. C. Nino, J. Appl. Phys. 113, 024102 (2013).

    Article  ADS  Google Scholar 

  25. M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151, 323 (2000).

    Article  ADS  Google Scholar 

  26. T. Takeuchi, E. B. Etourne, M. Tabuchi, H. Kageyama, Y. Kobayashi, A. Coast, F. Morrison, D. C. Sinclair, and A. R. West, J. Mater. Sci. 34, 917 (1999).

    Article  ADS  Google Scholar 

  27. M. Legallais, S. Fourcade, U.-C. Chung, D. Michau, M. Maglione, F. Mauvy, and C. Elissalde, J. Eur. Ceram. Soc. 38, 543 (2018).

    Article  Google Scholar 

  28. Y. He, Thermochim. Acta 419, 135 (2004).

    Article  Google Scholar 

  29. V. Mueller, L. Jager, H. Beige, H.-P. Abicht, and T. Muller, Solid State Commun. 129, 757 (2004).

    Article  ADS  Google Scholar 

  30. B. A. Strukov, S. T. Davitadze, V. V. Lemanov, S. G. Shulman, Y. Uesu, and S. Asanuma, Ferroelectrics 347, 179 (2007).

    Article  Google Scholar 

  31. S. Kallaev, Z. Omarov, A. Bakmaev, and K. Abdulvakhidov, Phys. Solid State 55, 1095 (2013).

    Article  ADS  Google Scholar 

  32. S. F. Karmanenko, O. V. Pakhomov, A. M. Prudan, A. S. Starkov, and A. Eskov, J. Eur. Ceram. Soc. 27, 3109 (2007).

    Article  Google Scholar 

  33. G. Suchaneck and G. Gerlach, Ferroelectrics 516, 1 (2017).

    Article  Google Scholar 

  34. V. Bondarev, E. Mikhaleva, I. Flerov, and M. Gorev, Phys. Solid State 59, 1118 (2017).

    Article  ADS  Google Scholar 

  35. V. Bondarev, I. Flerov, M. Gorev, E. Pogoreltsev, M. Molokeev, E. Mikhaleva, A. Shabanov, and A. Es’kov, Scr. Mater. 146, 51 (2018).

    Article  Google Scholar 

  36. I. Flerov and E. Mikhaleva, Phys. Solid State 50, 478 (2008).

    Article  ADS  Google Scholar 

  37. X. Guo, C. Pithan, C. Ohly, C.-L. Jia, J. Dornseiffer, F.-H. Haegel, and R. Waser, Appl. Phys. Lett. 86, 082110 (2005).

    Article  ADS  Google Scholar 

  38. A. I. Karchevskii, Sov. Phys. 3, 2249 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kartashev.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartashev, A.V., Bondarev, V.S., Flerov, I.N. et al. Study of the Physical Properties and Electrocaloric Effect in the BaTiO3 Nano- and Microceramics. Phys. Solid State 61, 1052–1061 (2019). https://doi.org/10.1134/S1063783419060088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419060088

Navigation