Study of the Physical Properties and Electrocaloric Effect in the BaTiO3 Nano- and Microceramics


The specific heat, thermal expansion, permittivity, and electrocaloric effect in bulk of BaTiO3 (BT) samples in the form of nano- (nBT-500 nm) and micro- (mBT-1200 nm) ceramics fabricated using spark plasma sintering and solid-state plasma techniques have been investigated. The size effect has been reflected, to a great extent, in the suppression of the specific heat and thermal expansion anomalies and in the changes in the temperatures and entropies of phase transitions and permittivity, and a decrease in the maximum intensive electrocaloric effect: \(\Delta T_{{{\text{AD}}}}^{{\max }}\) = 29 mK (E = 2.0 kV/cm) for nBT and \(\Delta T_{{{\text{AD}}}}^{{\max }}\) = 70 mK (E = 2.5 kV/cm) for mBT. The conductivity growth at temperatures above 360 K leads to the significant irreversible heating of the samples due to the Joule heat release in the applied electric field, which dominates over the electrocaloric effect.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.


  1. 1

    Y. Liu, J. F. Scott, and B. Dkhil, Appl, Phys. Rev. 3, 031102 (2016).

    Article  Google Scholar 

  2. 2

    Y. Liu, J. F. Scott, and B. Dkhil, Appl. Mater. 4, 064109 (2016).

    ADS  Article  Google Scholar 

  3. 3

    H. Khassaf, T. Patel, and P. Alpay, J. Appl. Phys. 121, 144102 (2017).

    ADS  Article  Google Scholar 

  4. 4

    Y. V. Sinyavski, G. E. Lugansky, and N. D. Pashov, Cryogenics 32, 28 (1992).

    ADS  Article  Google Scholar 

  5. 5

    S. G. Lu, B. Rožič, Q. M. Zhang, Z. Kutnjak, R. Pirc, and M. Lin, Appl. Phys. Lett. 97, 2291 (2010).

    Google Scholar 

  6. 6

    X. Hao, Z. Yue, J. Xu, S. An, and C.-W. Nan, J. Appl. Phys. 110, 064109 (2011).

    ADS  Article  Google Scholar 

  7. 7

    D. Saranaya, A. R. Chaudhuri, J. Parui, and S. B. Krupanidhi, Bull. Mater. Sci. 32, 259 (2009).

    Article  Google Scholar 

  8. 8

    A. S. Mischenko, Q. M. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science (Washington, DC, U. S.) 311, 1270 (2006).

    ADS  Article  Google Scholar 

  9. 9

    S. Kar-Narayan and N. D. Mathur, J. Phys. D 43, 032002 (2010).

    ADS  Article  Google Scholar 

  10. 10

    N. A. S. Smith, M. K. Rokosz, and T. M. Correia, J. Appl. Phys. 116, 044511 (2014).

    ADS  Article  Google Scholar 

  11. 11

    X. Moya, E. Stern-Taulats, S. Crossley, D. Gonzolez-Alonso, S. Kar-Narayan, A. Planes, L. Manosa, and N. D. Mathur, Adv. Mater. 25, 1360 (2013).

    Article  Google Scholar 

  12. 12

    M. Valant, A.-K. Axelsson, F. Goupil, and N. M. Alford, Mater. Chem. Phys. 136, 277 (2012).

    Article  Google Scholar 

  13. 13

    D.-H. Kim, W.-S. Um, and H.-G. Kim, J. Mater. Res. 11, 2002 (1996).

    ADS  Article  Google Scholar 

  14. 14

    T. Tunkasiri and G. Rujijanagul, J. Mater. Sci. Lett. 15, 1767 (1996).

    Article  Google Scholar 

  15. 15

    C. Neusel and G. A. Schneider, J. Mech. Phys. Solids 63, 201 (2014).

    ADS  Article  Google Scholar 

  16. 16

    Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Joknsson, and P. Nanni, Phys. Rev. B 70, 024107 (2004).

    ADS  Article  Google Scholar 

  17. 17

    S. Lin, T. Lu, C. Jin, and X. Wang, Phys. Rev. B 74, 134115 (2006).

    ADS  Article  Google Scholar 

  18. 18

    B. A. Strukov, S. T. Davitadze, S. N. Kravchun, S. A. Taraskin, M. Golyzman, V. V. Lemanov, and S. G. Shulman, J. Phys.: Condens. Matter 15, 4331 (2003).

    ADS  Google Scholar 

  19. 19

    Z. Valdez-Nava, S. Guillemet-Fritsch, C. Tenailleau, T. Lebey, B. Durand, and J. Y. Chane-Ching, J. Electroceram. 22, 238 (2009).

    Article  Google Scholar 

  20. 20

    Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data, User’s Manual (2008).

    Google Scholar 

  21. 21

    G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, J. Phys. Chem. 97, 2368 (1993).

    Article  Google Scholar 

  22. 22

    A. V. Kartashev, I. N. Flerov, N. V. Volkov, and K. A. Sablina, Phys. Solid State 50, 2115 (2008).

    ADS  Article  Google Scholar 

  23. 23

    C. Voisin, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, H. Han, and J. C. Nino, Int. J. Appl. Ceram. Technol. 10, E122 (2013).

    Article  Google Scholar 

  24. 24

    H. Han, C. Voisin, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, C. Turner, and J. C. Nino, J. Appl. Phys. 113, 024102 (2013).

    ADS  Article  Google Scholar 

  25. 25

    M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151, 323 (2000).

    ADS  Article  Google Scholar 

  26. 26

    T. Takeuchi, E. B. Etourne, M. Tabuchi, H. Kageyama, Y. Kobayashi, A. Coast, F. Morrison, D. C. Sinclair, and A. R. West, J. Mater. Sci. 34, 917 (1999).

    ADS  Article  Google Scholar 

  27. 27

    M. Legallais, S. Fourcade, U.-C. Chung, D. Michau, M. Maglione, F. Mauvy, and C. Elissalde, J. Eur. Ceram. Soc. 38, 543 (2018).

    Article  Google Scholar 

  28. 28

    Y. He, Thermochim. Acta 419, 135 (2004).

    Article  Google Scholar 

  29. 29

    V. Mueller, L. Jager, H. Beige, H.-P. Abicht, and T. Muller, Solid State Commun. 129, 757 (2004).

    ADS  Article  Google Scholar 

  30. 30

    B. A. Strukov, S. T. Davitadze, V. V. Lemanov, S. G. Shulman, Y. Uesu, and S. Asanuma, Ferroelectrics 347, 179 (2007).

    Article  Google Scholar 

  31. 31

    S. Kallaev, Z. Omarov, A. Bakmaev, and K. Abdulvakhidov, Phys. Solid State 55, 1095 (2013).

    ADS  Article  Google Scholar 

  32. 32

    S. F. Karmanenko, O. V. Pakhomov, A. M. Prudan, A. S. Starkov, and A. Eskov, J. Eur. Ceram. Soc. 27, 3109 (2007).

    Article  Google Scholar 

  33. 33

    G. Suchaneck and G. Gerlach, Ferroelectrics 516, 1 (2017).

    Article  Google Scholar 

  34. 34

    V. Bondarev, E. Mikhaleva, I. Flerov, and M. Gorev, Phys. Solid State 59, 1118 (2017).

    ADS  Article  Google Scholar 

  35. 35

    V. Bondarev, I. Flerov, M. Gorev, E. Pogoreltsev, M. Molokeev, E. Mikhaleva, A. Shabanov, and A. Es’kov, Scr. Mater. 146, 51 (2018).

    Article  Google Scholar 

  36. 36

    I. Flerov and E. Mikhaleva, Phys. Solid State 50, 478 (2008).

    ADS  Article  Google Scholar 

  37. 37

    X. Guo, C. Pithan, C. Ohly, C.-L. Jia, J. Dornseiffer, F.-H. Haegel, and R. Waser, Appl. Phys. Lett. 86, 082110 (2005).

    ADS  Article  Google Scholar 

  38. 38

    A. I. Karchevskii, Sov. Phys. 3, 2249 (1962).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. V. Kartashev.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kartashev, A.V., Bondarev, V.S., Flerov, I.N. et al. Study of the Physical Properties and Electrocaloric Effect in the BaTiO3 Nano- and Microceramics. Phys. Solid State 61, 1052–1061 (2019).

Download citation