Skip to main content
Log in

Optical Spectroscopy and Superconductivity of Cuprates (Review)

  • REVIEWS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The optical properties of low-dimensional dielectric cuprates, including parent systems for high-temperature superconductors, such as La2CuO4, Sr2CuO2Cl2, and YBa2Cu3O6 are briefly reviewed. The main focus is on the dd and pd charge transfer transitions, which determine the fundamental absorption band. The analysis of optical properties shows the instability of parent cuprates against the dd charge transfer with the formation of metastable electron–hole (EH) dimers of the Cu1+–Cu3+-type pairs coupled by the two-particle transfer and characterized by the giant electric polarizability. The formation of a system of stable EH dimers upon nonisovalent substitution determines the unconventional properties of the pseudogap and superconducting phases of doped cuprates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. G. Bednorz and K. A. Müller, Z. Phys. B 4, 189 (1986).

    Article  ADS  Google Scholar 

  2. H. Eskes, L. H. Tjeng, and G. A. Sawatzky, Phys. Rev. B 41, 288 (1990).

    Article  ADS  Google Scholar 

  3. J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk, Phys. Rev. B 38, 11322 (1988).

    Article  ADS  Google Scholar 

  4. A. S. Moskvin, Opt. Spectrosc. 121, 467 (2016).

    Article  ADS  Google Scholar 

  5. A. S. Moskvin and R. V. Pisarev, J. Low Temp. Phys. 36, 489 (2010).

    Article  Google Scholar 

  6. A. S. Moskvin, A. A. Makhnev, L. V. Nomerovannaya, N. N. Loshkareva, and A. M. Balbashov, Phys. Rev. B 82, 035106 (2010).

    Article  ADS  Google Scholar 

  7. V. I. Sokolov, V. A. Pustovarov, V. N. Churmanov, V. Yu. Ivanov, N. B. Gruzdev, P. S. Sokolov, A. N. Ba-ranov, and A. S. Moskvin, Phys. Rev. B 86, 115128 (2012).

    Article  ADS  Google Scholar 

  8. A. S. Moskvin, R. Neudert, M. Knupfer. J. Fink, and R. Hayn, Phys. Rev. B 65, 180512(R) (2002).

  9. E. B. Stechel and D. R. Jennison, Phys. Rev. B 38, 8873 (1988).

    Article  ADS  Google Scholar 

  10. A. K. McMahan, J. F. Annett, and R. M. Martin, Phys. Rev. B 42, 6268 (1990).

    Article  ADS  Google Scholar 

  11. M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 49, 14211 (1994).

    Article  ADS  Google Scholar 

  12. L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 40, 2217 (1989).

    Article  ADS  Google Scholar 

  13. R. Hayn, H. Rosner, V. Yu. Yushankhai, S. Haffner, C. Duerr, M. Knupfer, G. Krabbes, M. S. Golden, J. Fink, H. Eschrig, D. J. Singh, N. T. Hien, A. A. Me-novsky, Ch. Jung, and G. Reichardt, Phys. Rev. B 60, 645 (1999).

    Article  ADS  Google Scholar 

  14. K. Ishii, Springer Tracts Mod. Phys. 269, 197 (2017).

    Article  Google Scholar 

  15. A. S. Moskvin, A. A. Gippius, A. V. Tkachev, A. V. Ma-hajan, T. Chakrabarty, I. A. Presniakov, A. V. Sobolev, and G. Demazeau, Phys. Rev. B 86, 241107(R) (2012).

  16. R. Neudert, M. Knupfer, M. S. Golden, J. Fink, W. Stephan, K. Penc, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 81, 657 (1998).

    Article  ADS  Google Scholar 

  17. A. S. Moskvin, J. Málek, M. Knupfer, R. Neudert, J. Fink, R. Hayn, S.-L. Drechsler, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 91, 037001 (2003).

    Article  ADS  Google Scholar 

  18. T. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  19. H. S. Choi, Y. S. Lee, T. W. Noh, E. J. Choi, Yunkyu Bang, and Y. J. Kim, Phys. Rev. B 60, 4646 (1999).

    Article  ADS  Google Scholar 

  20. A. S. Moskvin, Phys. Rev. B 84, 075116 (2011).

    Article  ADS  Google Scholar 

  21. Y. Ando, Y. Kurita, S. Komiya, S. Ono, and K. Segawa, Phys. Rev. Lett. 92, 197001 (2004);

    Article  ADS  Google Scholar 

  22. S. Ono, S. Komiya, and Y. Ando, Phys. Rev. B 75, 024515 (2007).

    Article  ADS  Google Scholar 

  23. M. Ikeda, M. Takizawa, T. Yoshida, A. Fujimori, K. Segawa, and Y. Ando, Phys. Rev. B 82, 020503(R) (2010).

  24. M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod. Phys. 70, 897 (1998);

    Article  ADS  Google Scholar 

  25. M. Grüninger, J. Münzel, A. Gaymann, A. Zibold, H. P. Geserich, and T. Kopp, Europhys. Lett. 35, 55 (1996).

    Article  ADS  Google Scholar 

  26. J. D. Perkins, R. J. Birgeneau, J. M. Graybeal, et al., Phys. Rev. B 58, 9390 (1998).

    Article  ADS  Google Scholar 

  27. M. Grüninger, D. van der Marel, A. Damascelli, A. Erb, T. Nunner, and T. Kopp, Phys. Rev. B 62, 12422 (2000).

    Article  ADS  Google Scholar 

  28. S. L. Cooper, D. Reznik, A. Kotz, et al., Phys. Rev. B 47, 8233 (1993).

    Article  ADS  Google Scholar 

  29. D. Nicoletti, P. Di Pietro, O. Limaj, P. Calvani, U. Schade, S. Ono, Y. Ando, and S. Lupi, New J. Phys. 13, 123009 (2011).

    Article  ADS  Google Scholar 

  30. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Article  ADS  Google Scholar 

  31. P. W. Anderson, J. Phys. Chem. Solids 59, 1675 (1998).

    Article  ADS  Google Scholar 

  32. H. Kishida, H. Matsuzaki, H. Okamoto, T. Manabe, M. Yamashita, Y. Taguchi, and Y. Tokura, Nature (London, U.K.) 405, 929 (2000).

    Article  ADS  Google Scholar 

  33. M. Ono, K. Miura, A. Maeda, H. Matsuzaki, H. Ki-shida, Y. Taguchi, Y. Tokura, M. Yamashita, and H. Okamoto, Phys. Rev. B 70, 085101 (2004).

    Article  ADS  Google Scholar 

  34. T. Ogasawara, M. Ashida, N. Motoyama, H. Eisaki, S. Uchida, Y. Tokura, H. Ghosh, A. Shukla, S. Ma-zumdar, and M. Kuwata-Gonokami, Phys. Rev. Lett. 85, 2204 (2000).

    Article  ADS  Google Scholar 

  35. A. Maeda, M. Ono, H. Kishida, T. Manako, A. Sawa, M. Kawasaki, Y. Tokura, and H. Okamoto, Phys. Rev. B 70, 125117 (2004).

    Article  ADS  Google Scholar 

  36. H. Kishida, M. Ono, K. Miura, H. Okamoto, M. Izu-mi, T. Manako, M. Kawasaki, Y. Taguchi, Y. Tokura, T. Tohyama, K. Tsutsui, and S. Maekawa, Phys. Rev. Lett. 87, 177401 (2001).

    Article  ADS  Google Scholar 

  37. A. Schülzgen, Y. Kawabe, E. Hanamura, A. Yamanaka, P.-A. Blanche, J. Lee, H. Sato, M. Naito, N. T. Dan, S. Uchida, Y. Tanabe, and N. Peyghambarian, Phys. Rev. Lett. 86, 3164 (2001).

    Article  ADS  Google Scholar 

  38. L. P. Gorkov and G. B. Teitelbaum, Phys. Rev. Lett. 97, 247003 (2006);

    Article  ADS  Google Scholar 

  39. J. Phys.: Conf. Ser. 108, 012009 (2008).

  40. P. Mendels and H. Alloul, Phys. C (Amsterdam, Neth.) 156, 355 (1988).

  41. T. Honma and P. H. Hor, Phys. Rev. B 77, 184520 (2008).

    Article  ADS  Google Scholar 

  42. A. S. Moskvin, I. G. Bostrem, and A. S. Ovchinnikov, JETP Lett. 78, 772 (2003);

    Article  ADS  Google Scholar 

  43. A. S. Moskvin, Phys. Rev. B 69, 214505 (2004).

    Article  ADS  Google Scholar 

  44. H. Matsuda and T. Tsuneto, Suppl. Prog. Theor. Phys. 46, 411 (1970).

    Article  ADS  Google Scholar 

  45. R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).

    Article  ADS  Google Scholar 

  46. A. S. Moskvin, J. Phys.: Conf. Ser. 592, 012076 (2015);

    Google Scholar 

  47. J. Exp. Theor. Phys. 121, 477 (2015).

  48. A. S. Moskvin and Yu. D. Panov, J. Supercond. Nov. Magn. 31, 677 (2018).

    Article  Google Scholar 

  49. A. S. Moskvin, Yu. D. Panov, V. V. Konev, E. V. Vasinovich, and V. A. Ulitko, Acta Phys. Polon. A 133, 426 (2018).

    Article  Google Scholar 

  50. Yu. D. Panov, A. S. Moskvin, E. V. Vasinovich, and V. V. Konev, Phys. B (Amsterdam, Neth.) 536, 464 (2018).

  51. S. Scheurell, F. Scholz, T. Olesch, and E. Kemnitz, Supercond. Sci. Technol. 5, 303 (1992).

    Article  ADS  Google Scholar 

Download references

FUNDING

This study was supported by the Government of the Russian Federation, Program 211, agreement no. 02.A03.21.0006 and the Ministry of Education and Science of the Russian Federation, projects nos. 2277 and 5719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moskvin.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.S. Optical Spectroscopy and Superconductivity of Cuprates (Review). Phys. Solid State 61, 693–701 (2019). https://doi.org/10.1134/S1063783419050196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419050196

Navigation