Skip to main content
Log in

Topological Structures in a Model Cuprate

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We address a minimal model to describe the charge degree of freedom in the CuO2 planes with the on-site Hilbert space reduced to only a charge triplet of the three effective valence centers, nominally Cu1+;2+;3+, and made use of the S = 1 pseudospin formalism. The 2D S = 1 pseudospin system is prone to a creation of different topological structures which form topologically protected inhomogeneous distributions of the eight local S = 1 pseudospin order parameters including charge density and superfluid order parameters. We focus on the so-called quadrupole skyrmion which is believed to be a candidate for a topological charge excitation in parent or underdoped cuprates. Puzzlingly, such an unconventional structure is characterized by a uniform distribution of the mean on-site charge that makes the quadrupole skyrmion texture to be invisible for X-rays. We suppose that the parent insulating antiferromagnetic cuprates may be unstable with regard to nucleation of topological defects in the unconventional form of the one- or multi-center skyrmion-like object with ring-shaped superfluid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Campi, G., Bianconi, A., Poccia, N., et al.: Nature 525, 359 (2015)

    Article  ADS  Google Scholar 

  2. Uemura, Y.J., Le, L.P., Luke, G.M., et al.: Phys. Rev. Lett. 66, 2665 (1991)

    Article  ADS  Google Scholar 

  3. Micnas, R., Ranninger, J., Robaszkiewicz, S.: Rev. Mod. Phys. 62, 113 (1990)

    Article  ADS  Google Scholar 

  4. Alexandrov, A.S.: Phys. Scr. 83, 038301 (2011)

    Article  ADS  Google Scholar 

  5. Moskvin, A.S.: Phys. Rev. B 84, 075116 (2011)

    Article  ADS  Google Scholar 

  6. Moskvin, A.S.: Low Temp. Phys. 33, 234 (2007)

    Article  ADS  Google Scholar 

  7. Moskvin, A.S.: Phys. Rev. B 79, 115102 (2009)

    Article  ADS  Google Scholar 

  8. Moskvin, A.S.: J. Phys.: Condens. Matter 25, 085601 (2013)

    ADS  Google Scholar 

  9. Moskvin, A.S.: J. Phys.: Conf. Ser. 592, 012076 (2015)

    Google Scholar 

  10. Moskvin, A.S.: J. Supercond. Nov. Magn. 29(4), 1057 (2016)

    Article  Google Scholar 

  11. Batista, C.D., Ortiz, G.: Adv. Phys. 53, 1 (2004)

    Article  ADS  Google Scholar 

  12. Mikushina, N.A., Moskvin, A.S.: Phys. Lett. A 302, 8 (2002). arXiv:cond-mat/0111201

    Article  ADS  Google Scholar 

  13. Moskvin, A.S.: JETP 121, 477 (2015)

    Article  ADS  Google Scholar 

  14. Hirsch, J.E., Tang, S.: Phys. Rev. B 40, 2179 (1989)

    Article  ADS  Google Scholar 

  15. Lawler, M.J., et al.: Nature 466, 347 (2010)

    Article  ADS  Google Scholar 

  16. Bianconi, A., et al.: Phys. Rev. Lett. 76, 3412 (1996)

    Article  ADS  Google Scholar 

  17. Park, S.R., et al.: Phys. Rev. B 89, 020506(R) (2014)

    Article  ADS  Google Scholar 

  18. Panov, Yu.D., Moskvin, A.S., Chikov, A.A., Avvakumov, I.L.: J. Low Temp. Phys. 185, 409 (2016)

    Article  ADS  Google Scholar 

  19. Belavin, A.A., Polyakov, A.M.: JETP Lett. 22, 245 (1975)

    ADS  Google Scholar 

  20. Sasaki, J., Matsubara, F.: J. Phys. Soc. Jpn. 66, 2138 (1997)

    Article  ADS  Google Scholar 

  21. Knigavko, A., Rosenstein, B., Chen, Y.F.: Phys. Rev. B 60, 550 (1999)

    Article  ADS  Google Scholar 

  22. Varma, C.M.: Phys. Rev. B 73, 155113 (2006)

    Article  ADS  Google Scholar 

  23. Moskvin, A.S.: JETP Lett. 96, 385 (2012)

    Article  ADS  Google Scholar 

  24. Moskvin, A.S., Bostrem, I.G., Ovchinnikov, A.S.: JETP Lett. 78, 772 (2003)

    Article  ADS  Google Scholar 

  25. Moskvin, A.S.: Phys. Rev. B 69, 214505 (2004)

    Article  ADS  Google Scholar 

  26. Green, A.G.: Phys. Rev. B 61, R16299 (2000)

    Article  ADS  Google Scholar 

  27. Li, L., Wang, Y., Komiya, S., Ono, S., Ando, Y., Gu, G.D., Ong, N.P.: Phys. Rev. B 81, 054510 (2010)

    Article  ADS  Google Scholar 

  28. Gooding, R.J.: Phys. Rev. Lett. 66, 2266 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (ASM) would like to thank A. Bianconi, R. Micnas, A. Menushenkov, and S.-L. Drechsler for helpful discussions. .

Funding

The work was supported by Act 211 Government of the Russian Federation, agreement No 02.A03.21.0006, and by the Ministry of Education and Science, projects 2277 and 5719

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moskvin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.S., Panov, Y.D. Topological Structures in a Model Cuprate. J Supercond Nov Magn 31, 677–682 (2018). https://doi.org/10.1007/s10948-017-4352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4352-6

Keywords

Navigation