Skip to main content
Log in

Martensite Transformation, Magnetotransport Properties, and Magnetocaloric Effect in Ni47Mn42In11 Alloy

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure, electric properties, and magnetocaloric effect in Ni47Mn42In11 ferromagnetic alloy in which the martensite transformation temperature is close to room temperature and nearly coincides with the austenite Curie temperature are studied. It is revealed that the spontaneous transformation of martensite to austenite is accompanied with the decrease by 45% in its resistivity. In the martensite transformation induced by a magnetic field, a negative magnetoresistance is observed; it reaches ≈15% in the magnetic field with a strength of 18 kOe. The temperature dependence of the maximum change in the entropy in the martensite transformation induced by the magnetic field was calculated by using the Clausius–Clapeyron equation. It is shown that the maximum values of the magnetoresistance and magnetocaloric effect are observed near the temperature of the spontaneous martensite transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, Phys. Usp. 46, 559 (2003).

    Article  ADS  Google Scholar 

  2. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004).

    Article  ADS  Google Scholar 

  3. V. D. Buchel’nikov, A. N. Vasiliev, V. V. Koledov, V. V. Khovailo, S. V. Taskaev, and V. G. Shavrov, Phys. Usp. 49, 871 (2006).

    Article  ADS  Google Scholar 

  4. V. D. Buchelnikov and V. V. Sokolovskiy, Phys. Met. Metallogr. 112, 633 (2011).

    Article  ADS  Google Scholar 

  5. K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, and K. Ishida, Appl. Phys. Lett. 89, 182510 (2006).

    Article  ADS  Google Scholar 

  6. S. Y. Yu, Z. H. Liu, G. D. Liu, J. L. Chen, Z. X. Cao, G. H. Wu, B. Zhang, and X. X. Zhang, Appl. Phys. Lett. 89, 162503 (2006).

    Article  ADS  Google Scholar 

  7. S. Chatterjee, S. Majumdar, and V. Koledov, AIP Conf. Proc. 1447, 1161 (2012).

    Article  ADS  Google Scholar 

  8. V. K. Sharma, M. K. Chattopadhyay, L. S. Sharath Chandra, A. Khandelwal, R. K. Meena, and S. B. Roy, Eur. Phys. J. Appl. Phys. 62, 30601 (2013).

    Article  ADS  Google Scholar 

  9. Y. Liu, C. Jing, X. He, Y. Zhang, K. Xu, and Z. Li, Phys. Status Solidi A 214, 1600906 (2017).

    Article  ADS  Google Scholar 

  10. X. Chen, V. B. Naik, R. Mahendiran, and R. V. Ra-manujan, J. Alloys Compd. 618, 187 (2016).

    Article  Google Scholar 

  11. N. H. Dan, N. H. Duc, N. H. Yen, P. T. Thanh, L. V. Bau, N. A. Bang, N. T. Mai, P. K. Anh, T. D. Thanh, and T. L. Phan, J. Magn. Magn. Mater. 374, 372 (2015).

    Article  ADS  Google Scholar 

  12. A. Quetz, Y. Koshkidko, I. Titov, I. Rodionov, S. Pandey, A. Aryal, P. J. Ibarra-Gaytan, V. Prudnikov, A. Granovsky, and I. Dubenko, J. Alloys Compd. 683, 139 (2016).

    Article  Google Scholar 

  13. S. Pandey, A. Quetz, A. Aryal, T. Samanta, I. Du-benko, S. Stadler, and N. Ali, AIP Adv. 6, 056213 (2016).

    Article  ADS  Google Scholar 

  14. Yu. V. Kaletina and E. G. Gerasimov, Phys. Solid State 56, 1634 (2014).

    Article  ADS  Google Scholar 

  15. Yu. V. Kaletina, N. Yu. Frolova, V. M. Gundyrev, and A. Yu. Kaletin, Phys. Solid State 58, 1663 (2016).

    Article  ADS  Google Scholar 

  16. Yu. V. Kaletina, I. G. Kabanova, N. Yu. Frolova, V. M. Gundyrev, and A. Yu. Kaletin, Phys. Solid State 59, 2008 (2017).

    Article  ADS  Google Scholar 

  17. Yu. V. Kaletina, E. G. Gerasimov, V. M. Schastlivtsev, E. A. Fokina, and P. B. Terent’ev, Phys. Met. Metallogr. 114, 838 (2013).

    Article  ADS  Google Scholar 

  18. M. Balli, O. Sari, D. Fruchart, and J. Forchelet, EPJ Web Conf. 29, 00005 (2012).

  19. N. V. Mushnikov, E. G. Gerasimov, P. B. Terentev, V. S. Gaviko, K. A. Yazovskikh, and A. M. Aliev, J. Magn. Magn. Mater. 440, 89 (2017).

    Article  ADS  Google Scholar 

Download references

FUNDING

This work was supported by the Federal Agency for Scientific Organizations (themes “Structure”, project no. AAAA-A18-118020190116-6, and “Magnet”, project no. AAAA-A18-118020290129-5) and partly supported by the Russian Foundation for Basic Research (project no. 16-03-00043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kaletina.

Additional information

Translated by E. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaletina, Y.V., Gerasimov, E.G., Terent’ev, P.B. et al. Martensite Transformation, Magnetotransport Properties, and Magnetocaloric Effect in Ni47Mn42In11 Alloy. Phys. Solid State 61, 654–658 (2019). https://doi.org/10.1134/S1063783419040139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419040139

Navigation