Skip to main content
Log in

Direct and inverse magnetocaloric effect in Ni1.81Mn1.64In0.55, Ni1.73Mn1.80In0.47, and Ni1.72Mn1.51In0.49Co0.28 Heusler alloys

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The magnetic and magnetocaloric properties of Ni1.81Mn1.64In0.55, Ni1.73Mn1.80In0.47, and Ni1.72Mn1.51In0.49Co0.28 Heusler alloys are investigated. The magnetocaloric effect (MCE) is experimentally measured using the direct method with the help of different protocols. The phase transformation temperatures and the latent heat of metamagnetostructural transitions are determined from the temperature dependences of magnetization and via differential scanning calorimetry. In the case of Ni1.81Mn1.64In0.55 and Ni1.73Mn1.80In0.47 alloys, the temperature shift of martensitic transformation induced by external magnetic field is found. It is demonstrated that, in the Ni1.72Mn1.51In0.49Co0.28 alloy, added Co atoms raise the temperature of structural and magnetic phase changes and enhance the MCE. In addition, it is revealed that the MCE depends on measurement protocols near the first-order phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Gschneidner, and V. K. Pecharsky, Int. J. Refrig 31, 945 (2008).

    Article  Google Scholar 

  2. V. K. Pecharsky, A. P. Horn, K. A. Gschneidner, and R. Rink, Phys. Rev. Lett. 91 (1), 197204 (2003).

    Article  Google Scholar 

  3. K. Oikawa, W. Ito, Y. Imano, et al., Appl. Phys. Lett. 88, 122507 (2006).

    Article  Google Scholar 

  4. Z. D. Han, D. H. Wang, C. L. Zhang, et al., Appl. Phys. Lett. 89, 182507 (2006).

    Article  Google Scholar 

  5. J. Liu, T. G. Woodcock, N. Scheerbaum, and O. Gutfleisch, Acta Materialia 57, 4911 (2009).

    Article  Google Scholar 

  6. I. Dincer, E. Yüzüak, and Y. Elerman, J. Alloys Compd. 509, 794 (2011).

    Article  Google Scholar 

  7. V. Basso, C. P. Sasso, K. Skokov, et al., Phys. Rev. B 85, 014430 (2012).

    Article  Google Scholar 

  8. Y. Feng, J. H. Sui, H. B. Wang, and W. Cai, J. Magn. Magn. Mater. 324, 1982 (2012).

    Article  Google Scholar 

  9. J. Liu, T. Gottschall, K. P. Skokov, et al., Nature Mater. 11, 620 (2012).

    Article  Google Scholar 

  10. C. Jing, X. L. Wang, P. Liao, et al., J. Appl. Phys. 114, 063907 (2013).

    Article  Google Scholar 

  11. V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, et al., Int. J. Appl. Electromagn. Mechan. 23, 65 (2006).

    Google Scholar 

  12. R. Coballero-Flores, L. Gonsales-Logarreto, W. O. Rosa, et al., J. Alliys Compounds 629, 332 (2015).

    Article  Google Scholar 

  13. A. D. Bozhko, A. N. Vasil’ev, V. V. Khovailo, et al., JETP Lett. 67, 227 (1998).

    Article  Google Scholar 

  14. A. D. Bozhko, A. N. Vasil’ev, V. V. Khovailo, et al., Journ. of Experim. and Theor. Phys. 88, 954 (1999).

    Article  Google Scholar 

  15. I. E. Dikshtein, V. V. Koledov, V. G. Shavrov, et al., IEEE Trans. on Magn 35, 3811 (1999).

    Article  Google Scholar 

  16. V. Buchelnikov, I. Dikshtein, R. Grechishkin, et al., J. Magn. Magn. Mater. 272?276, 2025 (2004).

  17. N. I. Kourov, A. V. Korolev, V. G. Pushin, et al., Phys. Met. Metallogr. 99, 376 (2005).

    Google Scholar 

  18. V. G. Pushin, N. I. Kourov, A. V. Korolev, et al., Phys. Met. Metallogr. 99, 401 (2005).

    Google Scholar 

  19. S. Y. Yang, Y. Su, C. P. Wang, et al., Mater. Lett. 108, 215–218 (2013).

    Article  Google Scholar 

  20. O. M. Korpusov, R. M. Grechishkin, V. V. Koledov, et al., J. Magn. Magn. Mater. 272 (Spec. Issue), 2035 (2004).

    Article  Google Scholar 

  21. D. Zakharov, G. Lebedev, A. Irzhak, et al., Smart Mater. Structur 21, 052001 (2012).

    Article  Google Scholar 

  22. F. Albertini, S. Besseghini, A. S. Bugaev, R. M. Grechishkin, V. V. Koledov, L. Pareti, M. Pasquale, V. G. Shavrov, and D. S. Yulenkov, J. Commun. Technol. Electron. 50, 638 (2005).

    Google Scholar 

  23. P. V. Lega, V. V. Koledov, D. S. Kuchin, P. V. Mazaev, A. M. Zhikharev, A. V. Mashirov, V. S. Kalashnikov, S. A. Zybtsev, V. Ya. Pokrovskii, V. G. Shavrov, V.A. Dikan, L. V. Koledov, A. V. Shelyakov, and A. V. Irzhak, J. Commun. Technol. Electron. 60, 1124 (2015).

    Article  Google Scholar 

  24. W. Ito, Y. Imano, R. Kainuma, et al., Metallur. Mater. Trans. A 38, 759 (2007).

    Article  Google Scholar 

  25. J. A. Monroe, I. Karaman, B. Basaran, et al., Acta Materialia 60, 6883 (2012).

    Article  Google Scholar 

  26. M. Kaya, S. Yildirim, E. Yüzüak, et al., J. Magn. Magn. Mater. 368, 191 (2014).

    Article  Google Scholar 

  27. M. Khan, I. Dubenko, S. Stadler, and N. Ali, J. Phys., Condens. Matter. 16, 5259 (2004).

    Article  Google Scholar 

  28. M. K. Chattopadhyay, V. K. Sharma, Anil Chouhan, et al., Phys. Rev. B 84, 064417 (2011).

    Article  Google Scholar 

  29. L. Chen, F. X. Hu, J. Wang, et al., J. Phys. D: Appl. Phys. 44, 085002 (2011).

    Article  Google Scholar 

  30. A. M. Tishin, Y. I. Spichkin, D. B. Kopeliovich, and A. Y. Malyshev, in Proc. 3rd IIF-IIR Int. Conf. Magnetic Refrigeration at Room Temperature, Des Moines, Iowa (USA), May 11–15. 2009 (Curan Associates, Red Hook, 2009), p. 173.

    Google Scholar 

  31. V. V. Khovaylo, K. P. Skokov, Yu. S. Koshkid’ko, et al., Phys. Rev. 78, 060403 (2008).

    Article  Google Scholar 

  32. A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, et al., J. Appl. Phys. 117, 163903 (2015).

    Article  Google Scholar 

  33. X. Moya, X. Mañosa, and A. Planes, Phys. Rev. 75, 184412 (2016).

    Article  Google Scholar 

  34. T. Gottschall, K. P. Skokov, R. Burriel, and O. Gutfleisch, Acta Materialia 107, 1–8 (2016).

    Article  Google Scholar 

  35. T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, Appl. Phys. Lett. 106, 021901 (2015).

    Article  Google Scholar 

  36. I. Titov, M. Acet, M. Farle, et al., J. Appl. Phys. 112, 073914 (2012).

    Article  Google Scholar 

  37. I. D. Rodionov, Yu. S. Koshkid’ko, J. Cwik, A. Quetz, S. Pandey, A. Aryal, I. S. Dubenko, S. Stadler, N. Ali, I. S. Titov, M. Blinov, M. V. Prudnikova, V. N. Prudnikov, E. Lahderanta, and A. B. Granovskii, JETP Lett. 101, 385 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Buchelnikov.

Additional information

Original Russian Text © R.R. Fayzullin, A.V. Mashirov, V.D. Buchelnikov, V.V. Koledov, V.G. Shavrov, S.V. Taskaev, M.V. Zhukov, 2016, published in Radiotekhnika i Elektronika, 2016, Vol. 61, No. 10, pp. 994–1003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayzullin, R.R., Mashirov, A.V., Buchelnikov, V.D. et al. Direct and inverse magnetocaloric effect in Ni1.81Mn1.64In0.55, Ni1.73Mn1.80In0.47, and Ni1.72Mn1.51In0.49Co0.28 Heusler alloys. J. Commun. Technol. Electron. 61, 1129–1138 (2016). https://doi.org/10.1134/S1064226916100107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226916100107

Navigation