Skip to main content
Log in

Temperature Quenching and Fluorescence Depolarization of Carbon Nanodots Obtained via Paraffin Pyrolysis

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A temperature effect on fluorescence intensity and polarization of a colloidal system of carbon nanodots in glycerol under linearly polarized pumping conditions is studied. Nanodots are obtained via pyrolysis of paraffin in nanopores of a mesoporous silica. An increase in temperature leads to quenching of nanodots fluorescence, and activation energy of the quenching process is assessed. An experimental relationship between the linear fluorescence polarization and temperature is described by the Levshin–Perrin equation, which takes into account the rotational diffusion of luminescent particles (fluorophores) in a liquid matrix. The size of fluorophores is noticeably smaller than that of carbon nanodots according to the Levshin–Perrin model. A difference between the dimensions of the fluorophore and the nanodot indicates that the small atomic groups responsible for luminescence of the nanodot possess high segmental mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. It should be noted that the total emission intensity I is Iz + 2Iy for a linearly polarized pumping with E || z [13]. This intensity was analyzed above during consideration of temperature effect on fluorescence quenching.

REFERENCES

  1. M. Sharon and M. Sharon, Graphene: An Introduction to the Fundamentals and Industrial Applications (Wiley, Hoboken, 2015).

    Book  MATH  Google Scholar 

  2. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, and S.-Y. Xie, J. Am. Chem. Soc. 128, 7756 (2006).

    Article  Google Scholar 

  3. A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas, and E. P. Gia, Chem. Mater. 20, 4539 (2008).

    Article  Google Scholar 

  4. Y. Wang and A. Hu, J. Mater. Chem. C 2, 6921 (2014).

    Article  Google Scholar 

  5. M. A. Jhonsi and S. Thulasi, Chem. Phys. Lett. 661, 179 (2016).

    Article  ADS  Google Scholar 

  6. X. Wang, L. Cao, S.-T. Yang, F. Lu, M. J. Meziani, L. Tian, K. W. Sun, M. A. Bloodgood, and Y.-P. Sun, Angew. Chem. Int. Ed. 49, 5310 (2010).

    Article  Google Scholar 

  7. H. Peng and J. Travas-Sejdic, Chem. Mater. 21, 5563 (2009).

    Article  Google Scholar 

  8. R. Jelinek, Carbon Quantum Dots (Springer, Switzerland, 2017).

    Book  Google Scholar 

  9. S.-T. Yang, X. Wang, H. Wang, F. Lu, P. G. Luo, L. Cao, M. J. Meziani, J.-H. Liu, Y. Liu, M. Chen, Y. Huang, and Y.-P. Sun, J. Phys. Chem. C 113, 18110 (2009).

    Article  Google Scholar 

  10. F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, and S. Yang, Nano Today 11, 565 (2016).

    Article  Google Scholar 

  11. P. P. Feofilov, The Physical Basic of Polarized Emission (Fizmatgiz, Moscow, 1959; Consultants Bureau, New York, 1961).

  12. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, San Diego, 1990).

    Google Scholar 

  13. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science, New York, 2006).

    Book  Google Scholar 

  14. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016).

    Article  ADS  Google Scholar 

  15. J. Zong, Y. Zhu, X. Yang, J. Shen, and C. Li, Chem. Commun. 47, 764 (2011).

    Article  Google Scholar 

  16. S. N. Jasperson and S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).

    Article  ADS  Google Scholar 

  17. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 2010).

    Google Scholar 

  18. P. Yu, X. Wen, Y.-R. Toh, and J. Tang, J. Phys. Chem. C 116, 25552 (2012).

    Article  Google Scholar 

  19. D. A. Fridrikhsberg, Course of Colloid Chemistry (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  20. Physical Properties of Glycerine and Its Solutions (Glycerine Producers Assoc., New York, 1963).

  21. A. Sharma, T. Gadly, A. Gupta, A. Ballal, S. K. Ghosh, and M. Kumbhakar, J. Phys. Chem. Lett. 7, 3695 (2016).

    Article  Google Scholar 

  22. M. O. Dekaliuk, O. Viagin, Y. V. Malyukin, and A. P. Demchenko, Phys. Chem. Chem. Phys. 16, 16075 (2014).

    Article  Google Scholar 

  23. D. K. Nelson, B. S. Razbirin, A. N. Starukhin, D. A. Eurov, D. A. Kurdyukov, E. Yu. Stovpiaga, and V. G. Golubev, Opt. Mater. 59, 28 (2016).

    Article  ADS  Google Scholar 

  24. A. N. Starukhin, D. K. Nelson, D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, and V. G. Golubev, JETP Lett. 107, 223 (2018).

    Article  ADS  Google Scholar 

  25. J. R. Unruh, G. Gokulrangan, G. H. Lushington, C. K. Johnson, and G. S. Wilson, Biophys. J. 88, 3455 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by the Russian Foundation for Basic Research (project no. 16-03-00472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Starukhin.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starukhin, A.N., Nelson, D.K., Kurdyukov, D.A. et al. Temperature Quenching and Fluorescence Depolarization of Carbon Nanodots Obtained via Paraffin Pyrolysis. Phys. Solid State 60, 2565–2570 (2018). https://doi.org/10.1134/S1063783418120284

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418120284

Navigation