Skip to main content
Log in

Energy Structure of an Individual Mn Acceptor in GaAs : Mn

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The energy structure of the Mn acceptor, which is a complex of Mn2+ ion plus valence band hole, is investigated in the external magnetic field and under presence of an uniaxial stress has been studied. The spin-flip Raman spectra are studied under resonant excitation of exciton bound to the Mn acceptor. The gfactors of the ground F = 1 and the first excited F = 2 states are determined and selection rules for the optical transitions between the acceptor states are described. The value of the random field (stress or electric field) acting on manganese acceptor and the deformation potential for the exchange interaction constant of the Mn2+ + hole complex are obtained. A theoretical model is developed that takes into account the influence of random internal and uniaxial external stress and magnetic field. The proposed model describes well the lines of spin-flip Raman scattering of Mn acceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science (Washington, DC, U. S.) 294, 1488 (2001).

    Article  ADS  Google Scholar 

  2. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).

    Article  ADS  Google Scholar 

  3. E. B. Myers, Science (Washington, DC, U. S.) 285, 867 (1999).

    Article  Google Scholar 

  4. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).

    Article  ADS  Google Scholar 

  5. J. A. Gaj and J. Kossut, Springer Sci. Mater. Sci. 144, 1 (2011).

    Google Scholar 

  6. M. Abolfath, T. Jungwirth, J. Brum, and A. H. Mac-Donald, Phys. Rev. B 63, 054418 (2001).

    Article  ADS  Google Scholar 

  7. I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  8. A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731 (2010).

    Article  ADS  Google Scholar 

  9. G. Schmidt, G. Richter, P. Grabs, C. Gould, D. Ferrand, and L. W. Molenkamp, Phys. Rev. Lett. 87, 227203 (2001).

    Article  ADS  Google Scholar 

  10. M. Tanaka and Y. Higo, Phys. Rev. Lett. 87, 026602 (2001).

    Article  ADS  Google Scholar 

  11. H. X. Tang, R. K. Kawakami, D. D. Awschalom, and M. L. Roukes, Phys. Rev. Lett. 90, 107201 (2003).

    Article  ADS  Google Scholar 

  12. H. Tang and M. K. Roukes, US Patent No. 7249518 (2007).

  13. T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).

    Article  ADS  Google Scholar 

  14. M. Glunk, J. Daeubler, L. Dreher, S. Schwaiger, W. Schoch, R. Sauer, W. Limmer, A. Brandlmaier, S. T. B. Goennenwein, C. Bihler, and M. S. Brandt, Phys. Rev. B 79, 195206 (2009).

    Article  ADS  Google Scholar 

  15. V. Novák, K. Olejník, J. Wunderlich, M. Cukr, K. Výborný, A. W. Rushforth, K. W. Edmonds, R. P. Campion, B. L. Gallagher, Jairo Sinova, and T. Jungwirth, Phys. Rev. Lett. 101, 077201 (2008).

    Article  ADS  Google Scholar 

  16. T. Jungwirth, K. Y. Wang, J. Mašek, K. W. Edmonds, J. König, J. Sinova, M. Polini, N. A. Goncharuk, A. H.MacDonald, M. Sawicki, A. W. Rushforth, R. P. Campion, L. X. Zhao, C. T. Foxon, and B. L. Gallagher, Phys. Rev. B 72, 165204 (2005).

    Article  ADS  Google Scholar 

  17. A. Oiwa, Y. Mitsumori, R. Moriya, T. Slupinski, and H. Munekata, Phys. Rev. Lett. 88, 137202 (2002).

    Article  ADS  Google Scholar 

  18. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature (London, U.K.) 408, 944 (2000).

    Article  ADS  Google Scholar 

  19. A. Shen, H. Ohno, F. Matsukura, Y. Sugawara, N. Akiba, T. Kuroiwa, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, J. Cryst. Growth 175–176, 1069 (1997).

    Article  Google Scholar 

  20. U. Welp, V. K. Vlasko-Vlasov, X. Liu, J. K. Furdyna, and T. Wojtowicz, Phys. Rev. Lett. 90, 167206 (2003).

    Article  ADS  Google Scholar 

  21. A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, Phys. Rev. Lett. 105, 117204 (2010).

    Article  ADS  Google Scholar 

  22. M. Bombeck, A. S. Salasyuk, B. A. Glavin, A. V. Scherbakov, C. Brüggemann, D. R. Yakovlev, V. F. Sapega, X. Liu, J. K. Furdyna, A. V. Akimov, and M. Bayer, Phys. Rev. B 85, 195324 (2012).

    Article  ADS  Google Scholar 

  23. V. F. Sapega, I. V. Kraynov, N. I. Sablina, G. S. Dimitriev, N. S. Averkiev, and K. H. Ploog, Solid State Commun. 157, 34 (2013).

    Article  ADS  Google Scholar 

  24. W. Schairer and M. Schmidt, Phys. Rev. B 10, 2501 (1974).

    Article  ADS  Google Scholar 

  25. I. Ya. Karlik, I. A. Merkulov, D. N. Mirlin, L. P. Nikitin, V. I. Perel’, and V. F. Sapega, Sov. Phys. Solid State 24, 2022 (1982).

    Google Scholar 

  26. J. Schneider, U. Kaufmann, W. Wilkening, M. Baeumler, and F. Köhl, Phys. Rev. Lett. 59, 240 (1987).

    Article  ADS  Google Scholar 

  27. H. C. Averkiev, A. A. Gutkin, E. B. Osipov, and M. A. Reshchikov, Sov. Phys. Solid State 30, 438 (1988).

    Google Scholar 

  28. M. Linnarsson, E. Janzén, B. Monemar, M. Kleverman, and A. Thilderkvist, Phys. Rev. B 55, 6938 (1997).

    Article  ADS  Google Scholar 

  29. V. F. Sapega, T. Ruf, and M. Cardona, Phys. Status Solidi B 226, 339 (2001).

    Article  ADS  Google Scholar 

  30. N. S. Averkiev, A. A. Gutkin, E. B. Osipov, and M. A. Reshchikov, Model of MnGa Deep Center in GaAs (Leningrad, Fiz. Tekh. Inst. im. A. F. Ioffe, 1988) [in Russian].

    Google Scholar 

  31. V. F. Sapega, M. Moreno, M. Ramsteiner, L. Däweritz, and K. Ploog, Phys. Rev. B 66, 075217 (2002).

    Article  ADS  Google Scholar 

  32. A. Petrou, D. L. Peterson, S. Venugopalan, R. R. Galazka, A. K. Ramdas, and S. Rodriguez, Phys. Rev. Lett. 48, 1036 (1982).

    Article  ADS  Google Scholar 

  33. D. L. Peterson, D. U. Bartholomew, U. Debska, A. K. Ramdas, and S. Rodriguez, Phys. Rev. B 32, 323 (1985).

    Article  ADS  Google Scholar 

  34. A. Petrou, D. L. Peterson, S. Venugopalan, R. R. Galazka, A. K. Ramdas, and S. Rodriguez, Phys. Rev. B 27, 3471 (1983).

    Article  ADS  Google Scholar 

  35. I. V. Krainov, V. F. Sapega, N. S. Averkiev, G. S. Dimitriev, K. H. Ploog, and E. Lähderanta, Phys. Rev. B 92, 245201 (2015).

    Article  ADS  Google Scholar 

  36. J. Debus, D. Dunker, V. F. Sapega, D. R. Yakovlev, G. Karczewski, T. Wojtowicz, J. Kossut, and M. Bayer, Phys. Rev. B 87, 205316 (2013).

    Article  ADS  Google Scholar 

  37. J. Debus, V. F. Sapega, D. Dunker, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, Phys. Rev. B 90, 235404 (2014).

    Article  ADS  Google Scholar 

  38. H. B. Bebb and E. W. Williams, Semiconductors and Semimetals, Ed. by R. K. Willardson and A. C. Beer (Academic, New York, 1972).

  39. T. Jungwirth, J. Sinova, J. Mašek, J. Kucera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).

    Article  ADS  Google Scholar 

  40. V. F. Sapega, N. I. Sablina, I. E. Panaiotti, N. S. Averkiev, and K. H. Ploog, Phys. Rev. B 80, 041202 (2009).

    Article  ADS  Google Scholar 

  41. Yu. A. Burenkov, Yu. M. Burdukov, S. Yu. Davydov, and S. P. Nikanorov, Sov. Phys. Solid State 15, 1175 (1973).

    Google Scholar 

  42. K. M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 65, 201303 (2002).

    Article  ADS  Google Scholar 

  43. N. S. Averkiev, A. A. Gutkin, N. M. Kolchanova, and M. A. Reshchikov, Sov. Phys. Semicond. 18, 1019 (1984).

    Google Scholar 

  44. A. M. Monakhov, N. I. Sablina, N. S. Averkiev, C. Çelebi, and P. M. Koenraad, Solid State Commun. 146, 416 (2008).

    Article  ADS  Google Scholar 

  45. A. M. Yakunin, A. Yu. Silov, P. M. Koenraad, J.-M. Tang, M. E. Flatté, J.-L. Primus, W. van Roy, J. de Boeck, A. M. Monakhov, K. S. Romanov, I. E. Panaiotti, and N. S. Averkiev, Nat. Mater. 6, 512 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Dimitriev.

Additional information

Original Russian Text © G.S. Dimitriev, I.V. Krainov, V.F. Sapega, N.S. Averkiev, J. Debus, E. Lähderanta, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 8, pp. 1556–1565.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitriev, G.S., Krainov, I.V., Sapega, V.F. et al. Energy Structure of an Individual Mn Acceptor in GaAs : Mn. Phys. Solid State 60, 1568–1577 (2018). https://doi.org/10.1134/S106378341808005X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341808005X

Navigation