Skip to main content
Log in

Colossal Magnetoresistance of Layered Manganite La1.2Sr1.8Mn2O7 and Its Description by a “Spin–Polaron” Conduction Mechanism

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The resistance of a La1.2Sr1.8Mn2(1–z)O7 single crystal has been studied in magnetic fields from 0 to 90 kOe. The magnetoresistance at temperature T = 75 K, near which a colossal magnetoresistance maximum is observed, has been successfully described in terms of the “spin–polaron” electric conduction mechanism. This value of the colossal magnetoresistance is due to a three-fold increase in the polaron size. The method of separating contributions of various conduction mechanisms to the magnetoresistance developed for materials with activation type of conduction is generalized to compounds in which a metal–insulator transition is observed. It is found that, at a temperature of 75 K, the contribution of the “orientation” mechanism is maximum (≈20%) in a magnetic field of 5 kOe and almost disappears in fields higher than 50 kOe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988; Nauka, Moscow, 1987).

    Google Scholar 

  2. V. F. Gantmakher and I. B. Levinson, Carrier Scattering in Metals and Semiconductors (Nauka, Moscow, 1984; North-Holland, Amsterdam, 1987).

    Google Scholar 

  3. I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Springer, New York, 1973).

    MATH  Google Scholar 

  4. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  5. G. Binasch, P. Grüunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

    Article  ADS  Google Scholar 

  6. M. Zabel, J. Phys.: Condens. Matter 11, 9303 (1999).

    ADS  Google Scholar 

  7. D. T. Pierce, J. Unguris, R. J. Celotta, and M. D. Stiles, J. Magn. Magn. Mater. 200, 290 (1999).

    Article  ADS  Google Scholar 

  8. M. I. Kurkin, E. A. Neifel’d, A. V. Korolev, N. A. Ugryumova, S. A. Gudin, and N. N. Gapontseva, Phys. Solid State 55, 974 (2013).

    Article  ADS  Google Scholar 

  9. S. A. Gudin, M. I. Kurkin, E. A. Neifel’d, A. V. Korolev, N. A. Ugryumova, and N. N. Gapontseva, J. Exp. Theor. Phys. 121, 878 (2015).

    Article  ADS  Google Scholar 

  10. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. M. Chen, Science (Washington, DC, U. S.) 264, 413 (1994).

    Article  ADS  Google Scholar 

  11. E. L. Nagaev, Phys. Usp. 39, 781 (1996).

    Article  ADS  Google Scholar 

  12. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  13. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, Berlin, 2002).

    Google Scholar 

  14. M. Yu. Kagan and K. I. Kugel’, Phys. Usp. 44, 553 (2001).

    Article  ADS  Google Scholar 

  15. A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel’, Ya. M. Blanter, and M. Yu. Kagan, J. Phys. Rev. B 63, 174424 (2001).

    Article  ADS  Google Scholar 

  16. A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel’, M. Yu. Kagan, and I. V. Brodsky, J. Exp. Theor. Phys. 95, 753 (2002).

    Article  ADS  Google Scholar 

  17. A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel’, M. Yu. Kagan, and I. V. Brodsky, J. Phys.: Condens. Matter 15, 1705 (2003).

    ADS  Google Scholar 

  18. Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature (London, U.K.) 380, 141 (1996).

    Article  ADS  Google Scholar 

  19. M. Tokunaga, N. Miura, Y. Moritomo, and Y. Tokura, Phys. Rev. B 59, 11151 (1999).

    Article  ADS  Google Scholar 

  20. C. L. Zhang, X. J. Chen, C. C. Almasan, J. S. Gardner, and J. L. Sarrao, Phys. Rev. B 65, 134439 (2002).

    Article  ADS  Google Scholar 

  21. M. Balbashov, S. G. Karabashev, Ya. M. Mukovskiy, and S. A. Zverkov, J. Cryst. Growth 167, 365 (1996).

    Article  ADS  Google Scholar 

  22. N. I. Solin, J. Magn. Magn. Mater. 401, 677 (2016).

    Article  ADS  Google Scholar 

  23. M. I. Kurkin, E. A. Neifel’d, A. V. Korolev, N. A. Ugryumova, S. A. Gudin, and N. N. Gapontseva, J. Exp. Theor. Phys. 116, 823 (2013).

    Article  ADS  Google Scholar 

  24. S. A. Gudin, N. N. Gapontseva, E. A. Neifel’d, A. V. Korolev, and N. A. Ugryumova, Bull. Russ. Acad. Sci.: Phys. 78, 900 (2014).

    Article  Google Scholar 

  25. E. L. Nagaev, JETP Lett. 6, 20 (1967).

    ADS  Google Scholar 

  26. T. Kasuya, A. Yanase, and T. Takeda, Solid State Commun. 8, 1543 (1970).

    Article  ADS  Google Scholar 

  27. M. A. Krivoglaz, Usp. Fiz. Nauk 106, 360 (1972).

    Article  Google Scholar 

  28. N. Mannella, W. L. Yang, K. Tanaka, X. J. Zhou, H. Zheng, J. F. Mitchell, J. Zaanen, T. P. Devereaux, N. Nagaosa, Z. Hussain, and Z.-X. Shen, Phys. Rev. B 76, 233102 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gudin.

Additional information

Original Russian Text © S.A. Gudin, N.I. Solin, N.N. Gapontseva, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 6, pp. 1067–1070.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudin, S.A., Solin, N.I. & Gapontseva, N.N. Colossal Magnetoresistance of Layered Manganite La1.2Sr1.8Mn2O7 and Its Description by a “Spin–Polaron” Conduction Mechanism. Phys. Solid State 60, 1078–1081 (2018). https://doi.org/10.1134/S1063783418060112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418060112

Navigation