Skip to main content
Log in

Study of the Anisotropic Elastoplastic Properties of β-Ga2O3 Films Synthesized on SiC/Si Substrates

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structural and mechanical properties of gallium oxide films grown on silicon crystallographic planes (001), (011), and (111) with a buffer layer of silicon carbide are investigated. Nanoindentation was used to study the elastoplastic properties of gallium oxide and also to determine the elastic recovery parameter of the films under study. The tensile strength, hardness, elasticity tensor, compliance tensor, Young’s modulus, Poisson’s ratio, and other characteristics of gallium oxide were calculated using quantum chemistry methods. It was found that the gallium oxide crystal is auxetic because, for some stretching directions, the Poisson’s ratio takes on negative values. The calculated values correspond quantitatively to the experimental data. It is concluded that the elastoplastic properties of gallium oxide films approximately correspond to the properties of bulk crystals and that a change in the orientation of the silicon surface leads to a significant change in the orientation of gallium oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012).

    Article  ADS  Google Scholar 

  2. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, IEEE Electron Dev. Lett. 34, 493 (2013).

    Article  ADS  Google Scholar 

  3. Y. Qu, Zh. Wu, M. Ai, D. Guo, Y. An, H. Yang, L. Li, and W. Tang, J. Alloys Compd. 680, 247 (2016).

    Article  Google Scholar 

  4. S. Nakagomi, T. Sai, and Y. Kokubun, Sens. Actuators B 187, 413 (2013).

    Article  Google Scholar 

  5. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, J. Cryst. Growth 378, 591 (2013).

    Article  ADS  Google Scholar 

  6. D. Gogova, G. Wagner, M. Baldini, M. Schmidbauer, K. Irmscher, R. Schewski, Z. Galazka, M. Albrecht, and R. Fornari, J. Cryst. Growth 401, 665 (2014).

    Article  ADS  Google Scholar 

  7. Y. Oshima, E. G. V’illora, Y. Matsushita, S. Yamamoto, and K. Shimamura, J. Appl. Phys. 118, 085301 (2015).

    Article  ADS  Google Scholar 

  8. V. I. Nikolaev, A. I. Pechnikov, S. I. Stepanov, I. P. Nikitina, A. N. Smirnov, A. V. Chikiryaka, S. S. Sharofidinov, V. E. Bougrov, and A. E. Romanov, Mater. Sci. Semicond. Proc. 47, 63 (2016).

    Article  Google Scholar 

  9. S. A. Kukushkin, V. I. Nikolaev, A. V. Osipov, E. V. Osipova, A. I. Pechnikov, and N. A. Feoktistov, Phys. Solid State 58, 1876 (2016).

    Article  ADS  Google Scholar 

  10. S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 113, 4909 (2013).

    Article  Google Scholar 

  11. T. S. Perova, J. Wasyluk, S. A. Kukushkin, A. V. Osipov, N. A. Feoktistov, and S. A. Grudinkin, Nanoscale Res. Lett. 5, 1507 (2010).

    Article  ADS  Google Scholar 

  12. L. M. Sorokin, N. V. Veselov, M. P. Shcheglov, A. E. Kalmykov, A. A. Sitnikova, N. A. Feoktistov, A. V. Osipov, and S. A. Kukushkin, Tech. Phys. Lett. 34, 992 (2008).

    Article  ADS  Google Scholar 

  13. A. C. Fischer-Cripps, Nanoindentation (Springer, Heidelberg, 2011).

    Book  Google Scholar 

  14. A. S. Grashchenko, S. A. Kukushkin, and A. V. Osipov, Tech. Phys. Lett. 40, 1114 (2014).

    Article  ADS  Google Scholar 

  15. A. S. Grashchenko, S. A. Kukushkin, A. V. Osipov, and A. V. Redkov, J. Phys. Chem. Solids 102, 151 (2017).

    Article  ADS  Google Scholar 

  16. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  ADS  Google Scholar 

  17. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1985).

    MATH  Google Scholar 

  18. J. G. Lee, Computational Materials Science. An Introduction (CRC, Taylor and Francis Group, Boca Raton, FL, 2017).

    Google Scholar 

  19. P. Giannozzi, S. Baroni, N. Bonini, M. Calra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Gironcoli, S. Fabris, G. Fratesi, Gebauer, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  20. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  21. Y. Oshima, E. Ahmadi, S. C. Badescu, F. Wu, and J. S. Speck, Appl. Phys. Express 9, 061102 (2016).

    Article  ADS  Google Scholar 

  22. K. L. Johnson, Contact Mechanics (Cambridge Univ. Press, Cambridge, 2003).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Additional information

Original Russian Text © A.S. Grashchenko, S.A. Kukushkin, V.I. Nikolaev, A.V. Osipov, E.V. Osipova, I.P. Soshnikov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 5, pp. 851–856.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grashchenko, A.S., Kukushkin, S.A., Nikolaev, V.I. et al. Study of the Anisotropic Elastoplastic Properties of β-Ga2O3 Films Synthesized on SiC/Si Substrates. Phys. Solid State 60, 852–857 (2018). https://doi.org/10.1134/S1063783418050104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418050104

Navigation