Skip to main content
Log in

Density of Electronic States in the Conduction Band of Ultrathin Films of Naphthalenedicarboxylic Anhydride and Naphthalenetetracarboxylic Dianhydride on the Surface of Oxidized Silicon

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of examination of the electronic structure of the conduction band of naphthalenedicarboxylic anhydride (NDCA) films in the process of their deposition on the surface of oxidized silicon are presented. These results were obtained using total current spectroscopy (TCS) in the energy range from 5 to 20 eV above the Fermi level. The energy position of the primary maxima of the density of unoccupied states (DOUS) of an NDCA film was determined based on the experimental TCS data and calculated data and compared with the position of the DOUS maxima of a naphthalenetetracarboxylic dianhydride (NTCDA) film. The theoretical analysis involved calculating the energies and the spatial distribution of orbitals of the molecules under study at the B3LYP/6-31G(d) DFT (density functional theory) level and correcting the obtained energies in accordance with the procedure that was proven effective in earlier studies of the conduction band of films of small conjugated organic molecules. It was found that the DOUS maxima of the NTCDA film in the studied energy interval from 5 to 20 eV above the Fermi level are shifted toward lower electron energies by 1–2 eV relative to the corresponding DOUS maxima of the NDCA film Subdivision of the Ufa Federal Research Centre of the.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Troshin, D. K. Susarova, E. A. Khakina, A. A. Goryachev, O. V. Borshchev, S. A. Ponomarenko, V. F. Razumov, and N. Serdar Sariciftci, J. Mater. Chem. 22, 18433 (2012).

    Article  Google Scholar 

  2. M. Gruenewald, L. K. Schirra, P. Winget, M. Kozlik, P. F. Ndione, A. K. Sigdel, J. J. Berry, R. Forker, J.-L. Brédas, T. Fritz, and O. L. A. Monti, J. Phys. Chem. C 119, 4865 (2015).

    Article  Google Scholar 

  3. A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, V. N. Petrov, and I. N. Trapeznikova, Org. Electron. 16, 186 (2015).

    Article  Google Scholar 

  4. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, and G. D. Zashikhin, Phys. Solid State 58, 1257 (2016).

    Article  ADS  Google Scholar 

  5. J. L. Bredas and A. J. Heeger, Chem. Phys. Lett. 217, 507 (1994).

    Article  ADS  Google Scholar 

  6. R. Tonner, P. Rosenowa, and P. Jakob, Phys. Chem. Chem. Phys. 18, 6316 (2016).

    Article  Google Scholar 

  7. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, Appl. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  8. I. S. Yahia, H. Y. Zahran, and F. H. Alamri, Synth. Met. 222, 186 (2016).

    Article  Google Scholar 

  9. C. Farley, N. V. S. D. K. Bhupathiraju, B. K. John, and C. M. Drain, J. Phys. Chem. A 120, 7451 (2016).

    Article  Google Scholar 

  10. B. Handke, L. Klita, J. Niziol, W. Jastrzebski, and A. Adamczyk, J. Mol. Struct. 1065–1066, 248 (2014).

    Article  Google Scholar 

  11. B. Handke, L. Klita, and W. Niemiec, Surf. Sci. (2017). doi 10.1016/j.susc.2017.08.23

    Google Scholar 

  12. L. Grzadziel, M. Krzywiecki, H. Peisert, T. Chassé, and J. Szuber, Org. Electron. 13, 1873 (2012).

    Article  Google Scholar 

  13. I. A. Averin, A. A. Karmanov, V. A. Moshnikov, I. A. Pronin, S. E. Igoshina, A. P. Sigaev, and E. I. Terukov, Phys. Solid State 57, 2373 (2015).

    Article  ADS  Google Scholar 

  14. M. Krzywiecki, L. Grzadziel, A. Sarfraz, D. Iqbal, A. Szwajca, and A. Erbe, Phys. Chem. Chem. Phys. 17, 10004 (2015).

    Article  Google Scholar 

  15. I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, M. V. Partyka, A. P. Luchechko, and L. I. Yarytska, Nanoscale Res. Lett. 11, 43 (2016).

    Article  ADS  Google Scholar 

  16. A. S. Komolov, Y. M. Zhukov, E. F. Lazneva, A. N. Aleshin, S. A. Pshenichnuk, N. B. Gerasimova, Yu. A. Panina, G. D. Zashikhin, and A. V. Baramygin, Mater. Des. 113, 319 (2017).

    Article  Google Scholar 

  17. C. K. Chan, E. G. Kim, J. L. Bredas, and A. Kahn, Adv. Funct. Mater. 16, 831 (2006).

    Article  Google Scholar 

  18. J. Taborski, P. Vaterlein, U. Zimmermann, and E. Umbach, J. Electron. Spectrosc. Rel. Phenom. 75, 129 (1995).

    Article  Google Scholar 

  19. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 5 (2000).

    Article  Google Scholar 

  20. D. Ozdal, N. P. Aydinlik, J. B. Bodapati, and H. Icil, Photochem. Photobiol. Sci. 16, 262 (2017).

    Article  Google Scholar 

  21. F. Wurthner, C. Thalacker, S. Diele, and C. Tschierske, Chem. Eur. J. 7, 2245 (2001).

    Article  Google Scholar 

  22. A. S. Komolov, P. J. Moller, Y. G. Aliaev, E. F. Lazneva, S. Akhremtchik, F. S. Kamounah, J. Mortenson, and K. Schaumburg, J. Mol. Struct. 744–747, 145 (2005).

    Article  Google Scholar 

  23. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117, 12633 (2013).

    Article  Google Scholar 

  24. S. A. Pshenichnyuk and A. S. Komolov, J. Phys. Chem. A 116, 761 (2012).

    Article  Google Scholar 

  25. S. A. Pshenichnyuk, A. V. Kukhto, I. N. Kukhto, and A. S. Komolov, Tech. Phys. 56, 754 (2011).

    Article  Google Scholar 

  26. S. Heutz, A. J. Ferguson, G. Rumbles, and T. S. Jones, Org. Electron. 3, 119 (2002).

    Article  Google Scholar 

  27. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, G. D. Zashikhin, and S. A. Pshenichnyuk, Phys. Solid State 59, 403 (2017).

    Article  ADS  Google Scholar 

  28. I. Bartos, Prog. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  29. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian 09, Revision D.01 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  31. P. D. Burrow and A. Modelli, SAR QSAR Environ. Res. 24, 647 (2013).

    Article  Google Scholar 

  32. A. M. Scheer and P. D. Burrow, J. Phys. Chem. B 110, 17751 (2006).

    Article  Google Scholar 

  33. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, E. P. Nafikova, and A. Modelli, Rapid Commun. Mass Spectrom. 29, 910 (2015).

    Article  Google Scholar 

  34. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, G. D. Zashikhin, A. V. Baramygin, P. Si, S. N. Akhremtchik, and A. A. Gavrikov, J. Electron Spectrosc. Rel. Phenom. 205, 52 (2015).

    Article  Google Scholar 

  35. T. Graber, F. Forster, A. Schoell, and F. Reinert, Surf. Sci. 605, 878 (2011).

    Article  ADS  Google Scholar 

  36. T. Maruyama, A. Hirasawa, T. Shindow, K. Akimoto, H. Kato, and A. Kakizaki, J. Lumin. 87–89, 782 (2000).

    Article  Google Scholar 

  37. A. P. Hitchcock, P. Fischer, A. Gedanken, and M. B. Robin, J. Phys. Chem. 91, 531 (1987).

    Article  Google Scholar 

  38. J. G. Chen, Surf. Sci Rep. 30, 1 (1997).

    Article  ADS  Google Scholar 

  39. A. Schoell, Y. Zou, D. Huebner, S. G. Urquhart, T. Schmidt, R. Fink, and E. Umbach, J. Chem. Phys. 123, 044509 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Additional information

Original Russian Text © A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, Yu.A. Panina, A.V. Baramygin, G.D. Zashikhin, S.A. Pshenichnyuk, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 799–804.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Density of Electronic States in the Conduction Band of Ultrathin Films of Naphthalenedicarboxylic Anhydride and Naphthalenetetracarboxylic Dianhydride on the Surface of Oxidized Silicon. Phys. Solid State 60, 804–808 (2018). https://doi.org/10.1134/S1063783418040169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418040169

Navigation