Skip to main content
Log in

Effect of the Lattice and Spin-Phonon Contributions on the Temperature Behavior of the Ground State Splitting of Gd3+ in SrMoO4

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99–375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 02 (T) = b2(F) + b2(L) and P 02 (T) = P2(F) + P2(L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting ΔE is carried out. In terms of the Newman model, the values of b2(L) and P2(L) depending on the thermal expansion of the static lattice are estimated; the b2(F) and P2(F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 02 (T) and P 02 (T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b2(F) and P2(F).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.-Y. Zhou, J.-S. Wei, F.-Z. Gong, J.-L. Huang, and L.-H. Yi, J. Solid State Chem. 181, 1337 (2008).

    Article  ADS  Google Scholar 

  2. A. Khanna and P. S. Dutta, J. Solid State Chem. 198, 93 (2013).

    Article  ADS  Google Scholar 

  3. A. S. Shcherbakov, A. O. Arellanes, and S. A. Nemov, Opt. Eng. 52, 064001 (2013).

    Article  ADS  Google Scholar 

  4. V. Osiko and I. Shcherbakov, Fotonika 39, 14 (2013).

    Google Scholar 

  5. H. Bhang, R. S. Boiko, D. M. Chernyak, J. H. Choi, S. Choi, F. A. Danevich, K. V. Efendiev, C. Enss, A. Fleischmann, A. M. Gangapshev, L. Gastaldo, A. M. Gezhaev, Y. S. Hwang, H. Jiang, W. G. Kang, et al., J. Phys.: Conf. Ser. 375, 042023 (2012).

    Google Scholar 

  6. A. D. Gorlov, Phys. Solid State 57, 1394 (2015).

    Article  ADS  Google Scholar 

  7. A. D. Gorlov, Phys. Solid State 59, 578 (2017).

    Article  ADS  Google Scholar 

  8. W. M. Walsh, Jr., Phys. Rev. 114, 1473 (1959).

    Article  ADS  Google Scholar 

  9. W. M. Walsh, Jr., J. Jeener, and N. Bloembergen, Phys. Rev. A 139, 1338 (1965).

    Article  ADS  Google Scholar 

  10. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970), vol. 1.

    Google Scholar 

  11. B. Bleaney, in Hyperfine Interactions, Ed. by A. J. Freeman and R. B. Frankel (Academic, New York, 1967), p. 1.

  12. S. A. Altshuler and B. M. Kozyrev, Electron Paramagnetic Resonance of Compounds of Elements of Intermediate Groups (Nauka, Moscow, 1972), p. 429 [in Russian].

    Google Scholar 

  13. D. J. Newman and W. Urban, Adv. Phys. 24, 793 (1975).

    Article  ADS  Google Scholar 

  14. G. G. Siu and D. J. Newman, J. Phys. C 15, 6753 (1982).

    Article  ADS  Google Scholar 

  15. D. J. Newman, J. Phys. C 8, 1862 (1975).

    Article  ADS  Google Scholar 

  16. L. I. Levin and A. D. Gorlov, J. Phys.: Condens. Matter 4, 1981 (1992).

    ADS  Google Scholar 

  17. V. T. Deshpande and S. V. Suryanarayana, Acta Crystallogr. A 28, 94 (1972).

    Article  ADS  Google Scholar 

  18. A. Senyshyn, H. Kraus, V. B. Mikhailik, and V. Yakovyna, Phys. Rev. B 70, 214306 (2004).

    Article  ADS  Google Scholar 

  19. S. N. Achary, S. J. Patwe, M. D. Mathews, and A. K. Tyagi, J. Phys. Chem. Solids 67, 774 (2006).

    Article  ADS  Google Scholar 

  20. A. Senyshyn, H. Kraus, V. B. Mikhailik, L. Vasylechko, and M. Knapp, Phys. Rev. B 73, 014104 (2006).

    Article  ADS  Google Scholar 

  21. E. Gurmen, E. Daniels, and J. S. King, J. Phys. Chem. Phys. 55, 1093 (1971).

    Article  ADS  Google Scholar 

  22. W. C. Zheng and S. Y. Wu, Physica B 304, 137 (2001).

    Article  ADS  Google Scholar 

  23. R. D. Shennon, Acta Crystallogr. A 32, 751 (1976).

    Article  ADS  Google Scholar 

  24. T. Rewajt, J. Kuriata, J. Typek, and J. Y. Buzare, Acta Phys. Polon. A 84, 1143 (1993).

    Article  Google Scholar 

  25. C. Y. Huang, Phys. Rev. 159, 683 (1967).

    Article  ADS  Google Scholar 

  26. K. N. Shrivastava, Phys. Rev. 187, 446 (1969).

    Article  ADS  Google Scholar 

  27. G. Pfister, W. Draybrodt, and W. Assmus, Phys. Status Solidi B 36, 351 (1969).

    Article  ADS  Google Scholar 

  28. M. P. Hehlen, A. Kuditcher, S. C. Rand, and M. A. Tischler, J. Chem. Phys. 107, 4886 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Gorlov.

Additional information

Original Russian Text © A.D. Gorlov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 2, pp. 329–332.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorlov, A.D. Effect of the Lattice and Spin-Phonon Contributions on the Temperature Behavior of the Ground State Splitting of Gd3+ in SrMoO4. Phys. Solid State 60, 334–338 (2018). https://doi.org/10.1134/S1063783418020117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418020117

Navigation