Skip to main content
Log in

Static and Dynamic Contributions to the Splitting of the Eu2+ Ground State in SrMoO4

  • IMPURITY CENTERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The EPR spectrum of an Eu2+ impurity center in a SrMoO4 single crystal in the temperature range T = 1.8, 111–300 K has been studied, and the temperature changes in the spin Hamiltonian parameters describing the EPR spectrum of odd europium isotopes have been determined. It is shown that small temperature changes in the diagonal parameters of the spin Hamiltonian (for odd Eu2+ isotopes) \(b_{2}^{0}\)(T) = b2(F) + b2(L) and \(P_{2}^{0}\)(T) = P2(F) + P2(L) are explained by the compensation of spin–phonon contributions b2(F) and P2(F) by the contributions of the lattice thermal expansion b2(L) and P2(L). The quantities b2(L) and P2(L) that are dependent on the static lattice parameters at a given temperature, are estimated in terms of the superposition Newman model. Then, the spin–phonon b2(F) and P2(F) contributions determined by the lattice ion vibrations are separated. An analysis shows that \(b_{2}^{0}\)(F) and \(P_{2}^{0}\)(F) > 0, b2(L) and P2(L) < 0, and the temperature behavior of the spin–phonon contribution is well described by G. Pfister’s model of local vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Th. P. J. Botden, Philips Res. Rep. 6, 425 (1951).

    Google Scholar 

  2. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. Garcia-Sole, J. Fernandez, and R. Balda, Appl. Opt. 38, 4533 (1999).

    Article  ADS  Google Scholar 

  3. V. Osiko and I. Shcherbakov, Fotonika 39, 14 (2013).

    Google Scholar 

  4. P. Meunier, M. Bravin, M. Bruckmayer, S. Giordano, M. Loidl, O. Meier, F. Pröbst, W. Seidel, M. Sisti, L. Stodolsky, S. Uchaikin, and L. Zerle, Appl. Phys. Lett. 75, 1335 (1999).

    Article  ADS  Google Scholar 

  5. W. M. Walsh, Jr., Phys. Rev. 114, 1473 (1959).

    Article  ADS  Google Scholar 

  6. A. D. Gorlov, Phys. Solid State 57, 1394 (2015).

    Article  ADS  Google Scholar 

  7. A. D. Gorlov, Phys. Solid State 59, 578 (2017).

    Article  ADS  Google Scholar 

  8. A. D. Gorlov, Phys. Solid State 60, 334 (2018).

    Article  ADS  Google Scholar 

  9. W. M. Walsh, Jr., J. Jeener, and N. Bloembergen, Phys. Rev. A 139, 1338 (1965).

    Article  ADS  Google Scholar 

  10. D. J. Newman, J. Phys. C 8, 1862 (1975).

    Article  ADS  Google Scholar 

  11. L. I. Levin and A. D. Gorlov, J. Phys.: Condens. Matter 4, 1981 (1992).

    ADS  Google Scholar 

  12. B. Bleaney, in Superfine Interactions in Solids, Ed. E. A. Turov (Mir, Moscow, 1970), p. 15 [in Russian].

  13. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford Univ., London, 1970), Vol. 1.

    Google Scholar 

  14. A. D. Gorlov, Phys. Solid State 56, 2185 (2014).

    Article  ADS  Google Scholar 

  15. S. A. Altshuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974; Nauka, Moscow, 1972).

  16. V. A. Vazhenin, A. D. Gorlov, L. I. Levin, K. M. Starichenko, S. A. Chikin, and K. M. Eriksonas, Sov. Phys. Solid State 29, 1744 (1987).

    Google Scholar 

  17. W. C. Zheng and S. Y. Wu, Phys. B (Amsterdam, Neth.) 304, 137 (2001).

  18. R. D. Shennon, Acta Crystallogr., A 32, 751 (1976).

    Article  ADS  Google Scholar 

  19. G. Guthohrlein, Physik 214, 332 (1968).

    Article  Google Scholar 

  20. T. Rewaijt, J. Kuriata, J. Typek, and J. Y. Buzare, Acta Phys. Polon. A 84, 1143 (1993).

    Article  Google Scholar 

  21. C. Y. Huang, Phys. Rev. 159, 683 (1967).

    Article  ADS  Google Scholar 

  22. K. N. Shrivastava, Phys. Rev. 187, 446 (1969).

    Article  ADS  Google Scholar 

  23. G. Pfister, W. Draybrodt, and W. Assmus, Phys. Status Solidi B 36, 351 (1969).

    Article  ADS  Google Scholar 

Download references

FUNDING

This work was carried out in the framework of the state task of the Ministry of Education and Science of the Russian federation for Ural Federal University (state task 3.6115.2017/8.9) on the equipment of the Collective Use Center “Modern nanotechnologies” at UrFU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Gorlov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorlov, A.D. Static and Dynamic Contributions to the Splitting of the Eu2+ Ground State in SrMoO4. Phys. Solid State 61, 802–805 (2019). https://doi.org/10.1134/S106378341905010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341905010X

Navigation